2024年  第38卷  第2期

封面
2024 年 2 期封面
2024, 38(2)
摘要:
目次
2024 年 2 期目次
2024, 38(2): 1-2.
摘要:
前言
高压超导专题 • 前言
2024, 38(2): 1-1.
摘要:
高压超导专题
二元富氢高温超导的实验研究进展
望贤成, 张俊, 靳常青
2024, 38(2): 020101. doi: 10.11858/gywlxb.20230843
摘要:

近室温富氢超导材料相关实验报道引发了科研人员对富氢超导的广泛关注,理论预测与实验探索新的富氢超导体及其物性研究已经成为目前超导领域的研究热点。本文结合课题组在富氢超导材料方面的实验研究工作,详细介绍了二元富氢超导体的实验研究进展。

高压下二元富氢超导体的实验研究进展
郭鉴宁, 王煜龙, 朱程程, 黄晓丽, 崔田
2024, 38(2): 020102. doi: 10.11858/gywlxb.20230742
摘要:

自从1911年著名物理学家Onnes发现超导电性以来,人们不断努力提高超导转变温度,室温超导体是人类追逐的百年梦想。在近百年的研究历程中,铜基超导体、铁基超导体及麦克米兰极限MgB2超导体的发现不断刷新了人们对超导领域的认知,也增强了人们进一步提高超导转变温度和挖掘高温超导机制的信心。最近,理论预测并被实验验证的新型富氢化合物显示了高温乃至室温超导电性的巨大潜力,成为室温超导体的最佳候选体系之一。值得注意的是,高压下硫氢化物和镧氢化物均具有超过200 K的超导转变温度,引领了富氢化合物的研究热潮,涌现了一些重要的理论和实验成果。本文聚焦于目前富氢化合物超导体的实验研究进展,从不同氢结构单元及氢成键特征的角度总结和归纳新型富氢化合物的晶体结构性质及超导性能。主要介绍了5种在实验上成功获得的富氢化合物超导体:间隙型、离子型、共价型、笼型及分子型。通过对比分析不同类型的富氢化合物超导体,总结出一些影响超导转变温度的普适规律,并提出目前实验上亟待解决的问题和未来主攻的实验方向。

高压极端条件下的富氢高温超导体
陈胤圻, 王洪波
2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842
摘要:

自从在汞中发现4.2 K的超导转变温度以来,寻找室温超导体一直是凝聚态物理领域的研究热点。近年来,科学家在高压极端条件下发现了以共价型H3S(Tc=203 K)和离子型LaH10Tc=250 K)、CaH6Tc=215 K)为代表的系列高温超导体,先后刷新了超导转变温度纪录,这些工作开启了学界在富氢化合物中寻找室温超导体的新篇章。本文重点介绍了目前高压下二元和三元富氢高温超导体的理论模拟以及实验制备和表征方面的相关研究进展,分析在富氢化合物中发现室温超导体面临的挑战和可能途径,为实现室温超导做出基础性贡献。

CuTe2单晶的高温高压合成和物性表征
石利粉, 王宁宁, 刘子儀, 崔琦, 张晓晓, 刘庆元, 隋郁, 王铂森, 孙建平, 程金光
2024, 38(2): 020104. doi: 10.11858/gywlxb.20230841
摘要:

具有黄铁矿结构的3d过渡金属硫族化合物MX2(M=Mn, Fe, Co, Ni, Cu, Zn;X=S, Se, Te)因呈现丰富的新奇物性而备受关注,其中CuX2是该体系中唯一的超导体,超导转变温度(Tc)分别为1.5 K(CuS2)、2.4 K(CuSe2)和1.3 K(CuTe2)。由于CuX2系列材料只能在高温高压条件下合成,因此,早期关于CuTe2的少数报道均基于多晶样品,到目前为止仍缺乏单晶样品物性的详细报道。采用川井型6/8式二级推进多砧压机,在900 ℃和5 GPa的高温高压条件下合成了高质量的CuTe2单晶样品,并对其进行详细的晶体结构、电输运、磁化率及比热容等物性表征。研究结果表明:CuTe2单晶样品为弱耦合Ⅱ类超导体,Tc约为1.3 K。通过总结对比同体系CuS2、CuSe2以及CuTe2的超导参数,进一步揭示了CuTe2费米面附近的态密度与超导演化的联系。

固体氢在极端压强下的超导性能
杜昱, 孙莹, 王彦超, 钟鑫
2024, 38(2): 020105. doi: 10.11858/gywlxb.20230722
摘要:

氢元素在常压下具有最简单的晶体结构和物理性质。随着压强增加,氢单质发生相变,由绝缘体转变为金属,被称为金属氢。数值模拟表明,金属氢具有高温超导电性,因此,金属氢研究也被称为高压物理领域的“圣杯”课题。利用基于密度泛函理论的第一性原理计算方法,对固体氢在极端高压(0.5~5.0 TPa)下的结构和超导电性开展了系统研究。研究结果表明:固体氢的高压相变序列为I41/amd→oC12→cI16;对于同一种结构,随着压强增加,电声耦合系数减小,费米面处电子态密度减小,特征振动频率增加,超导转变温度发生小幅变化;在2.0 TPa压强下,固体氢的超导转变温度高达418 K(库伦赝势经验值μ*=0.10)。研究工作将为金属氢及其超导电性的后续理论和实验研究提供参考。

高压下Y-Si-H体系晶体结构和超导性质的第一性原理研究
马浩, 陈玲, 蒋其雯, 安德成, 段德芳
2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
摘要:

采用第一性原理计算方法,研究了三元氢化物Y-Si-H体系在高压下的晶体结构、电子性质及超导性质,发现了热力学稳定的YSiH7、YSiH9、YSi2H12和YSiH18,以及热力学亚稳的YSi2H13、YSi2H14和Y2SiH17。电子性质计算表明,YSiH7为绝缘体,YSi2H13为半导体,其余氢化物均具有金属特性。通过麦克米兰方程估算超导转变温度(Tc)发现,YSi2H12具有最高的Tc,在100 GPa下为43.5 K。YSi2H14的动力学稳定压力可降至40 GPa,Tc为23.8 K,是Y-Si二元化合物中最高Tc的2倍,说明在Y-Si体系中引入H原子可以有效地提高超导转变温度。Y2SiH17在100 GPa下的Tc为35.8 K。谱函数和电声耦合计算结果表明,在YSi2H14和Y2SiH17中除中频振动的H原子诱导超导外,低频振动的Y原子也起着重要作用。

压力下超导RbBSi化合物的预测
刘金禹, 崔湘粤, 刘爱玲, 程潇冉, 王星宇, 王雨佳, 张淼
2024, 38(2): 020107. doi: 10.11858/gywlxb.20230765
摘要:

对RbBSi化合物在0~100 GPa压力范围内进行了广泛的群体智能结构搜索。提出了RbBSi的3种不同相,并通过第一性原理计算了其稳定性、电子结构和潜在的超导电性。在所研究的压力范围内,所有预测相在热力学和动力学上都是稳定的。3个相的能带都穿过费米能级,表明结构具备金属性。此外,P4/nmm-RbBSi在常压下的超导转变温度为14.4 K。这项工作加深了人们对碱金属硼硅化合物在超导体领域的理解,有望拓宽碱金属硼硅化合物在超导体领域的应用。

新型锕填充硼碳笼型化合物的超导电性
张王颖, 刘朝厅, 陈蕊, 蒋成澳, 李培芳, 闫岩
2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766
摘要:

Ac元素作为锕系第一号元素,AcH10的超导转变温度(Tc)达到251 K,是潜在的室温超导体。XB3C3(X表示不同的金属掺杂元素)是新发现的sp3笼型化合物,同时具有强共价特性和超导特性,是潜在的高温超导材料。采用第一性原理密度泛函理论,探索以XB3C3、XB2C4和XB4C2笼型结构为原型、引入Ac元素掺杂的AcB3C3、AcB2C4和AcB4C2的晶体结构、晶格动力学、电子性质和超导特性。研究发现:AcB2C4在0~200 GPa区间内难以合成;常压下AcB3C3表现为间接带隙半导体,带隙宽度约为1.154 eV。根据力学稳定性判据可知,AcB3C3和AcB4C2是弹性稳定的具有较高硬度和刚度的脆性材料。同时,常压下AcB4C2表现出超导特性,超导转变温度达到1.565 K。随着压强的增加,超导转变温度呈现先降低后升高的变化趋势,其超导机制由中频声子主导转变为低频与中频声子的共同作用。研究结果可为实验合成笼型化合物超导材料提供理论指导,为探索具有高超导转变温度的超导材料提供新思路。

高压下面心立方CeH9和CeH10动力学性质的第一性原理研究
王晓雪, 丁雨晴, 王晖
2024, 38(2): 020109. doi: 10.11858/gywlxb.20230771
摘要:

高压下的稀土金属超氢化物因具有高温超导电性而受到广泛关注。由于实验只能部分地确定超氢化物中稀土金属原子的晶格结构,因此,第一性原理计算成为全面理解其结构与物性的重要方法。基于第一性原理计算,对氢含量不同但Ce晶格结构相同的面心立方CeH9和CeH10的弹性、晶格动力学、质子动力学性质进行了对比研究,发现低氢含量有利于面心立方超氢化铈的弹性和声子稳定向低压拓展。在100~140 GPa压强区间,室温下CeH9和CeH10不具有显著的质子扩散,但1500 K时全面转变为超离子态,扩散系数分别为1.6×10−4~1.2×10−4 cm2/s和1.9×10−4~1.5×10−4 cm2/s;扩散系数与温度、氢含量正相关,但与压强负相关。所获得的压强、温度及氢含量对超氢化铈结构与动力学性质的影响规律可为其他超氢化物研究提供参考。

高压下物质的动态响应
极低温区循环载荷作用下Nb3Sn复合超导体的变形损伤及其应变率效应数值模拟
黄敏, 朱本浩, 肖革胜, 乔力
2024, 38(2): 024201. doi: 10.11858/gywlxb.20230755
摘要:

Nb3Sn超导体在循环载荷下的变形损伤行为研究对揭示超导体临界性能不可逆退化背后的力学机制具有重要意义。采用分子动力学模拟方法研究了极低温条件下单晶和多晶Nb3Sn/Nb复合材料在循环载荷下的变形损伤行为,同时分析了应变率对Nb3Sn/Nb复合材料变形损伤和断裂行为的影响。结果表明:单晶Nb3Sn/Nb复合材料在循环载荷作用后,Nb3Sn层出现滑移,当滑移带交错处的局部应力大于材料强度时,在滑移带交错处微裂纹萌生,致使复合材料中Nb3Sn层断裂失效;而多晶Nb3Sn/Nb复合材料则由于晶界处应力在循环载荷下得不到松弛,当应力峰值超过晶界强度时,在晶界处萌生微裂纹,导致复合材料中Nb3Sn层发生沿晶断裂。Nb3Sn/Nb复合材料在不同应变率下表现出不同的断裂方式。随着应变率的增加,单晶Nb3Sn层中的滑移带数量增加,导致单晶Nb3Sn/Nb复合材料的韧性增强。而多晶Nb3Sn/Nb复合材料中,晶界对材料强度的影响随着应变率的增加而降低,高应变率下,复合材料在Nb3Sn层局部断裂后具有较大的剩余强度。研究结果将有助于理解Nb3Sn/Nb复合材料在循环载荷下的损伤演化过程,为材料的性能优化设计提供一定的理论指导。

栓钉型弧形双钢板混凝土组合板的抗爆性能试验与数值分析
陈英杰, 罗成, 赵春风, 何凯城
2024, 38(2): 024202. doi: 10.11858/gywlxb.20230752
摘要:

弧形双钢板混凝土组合结构由钢板、混凝土与连接件协同作用,具有更优异的抗震和抗爆性能,被应用于超高层结构、海洋平台和核电设施中。利用试验和数值分析方法研究了栓钉型弧形双钢板混凝土组合结构的破坏模式和损伤机理,参数化分析了爆炸距离、钢板厚度、拱高和栓钉间距对其抗爆性能的影响。结果表明:在爆炸荷载下,栓钉型弧形双钢板混凝土组合板整体表现良好,仍具有较高的承载能力。增加爆炸距离和钢板厚度能有效减小混凝土的损伤和组合板的跨中挠度;减小拱高,混凝土损伤区域从以压缩破坏为主逐渐转换为以拉伸破坏为主,混凝土损伤更严重,组合板跨中挠度变大;减小栓钉间距会增大混凝土塑性损伤程度,但组合板的跨中挠度减小。研究结果可为弧形双钢板混凝土组合结构的设计提供参考。

高压科学应用
Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究
贾杰, 智小琦, 郝春杰, 李劲, 郭璐, 柳星河
2024, 38(2): 025101. doi: 10.11858/gywlxb.20230764
摘要:

Zr基非晶破片是一种新兴的活性高效毁伤元,其着靶速度达到一定阈值时会发生燃烧反应并破碎,从而大幅提高其后效毁伤能力。为研究Zr基非晶破片对碳纤维增强复合材料的侵彻破坏机理及后效毁伤能力,利用弹道枪加载球形破片,分别以496.4~1085.8 m/s、571.4~1103.9 m/s的速度范围撞击8和6 mm厚的碳纤维复合靶,并布置2 mm厚LY12铝靶板作为后效靶,以比较破片在不同工况下的后效毁伤能力。实验结果表明:碳纤维靶受活性破片冲击时,其迎弹面的破坏形式主要是压缩失效与剪切失效的耦合破坏,其背弹面的破坏形式主要是拉伸失效破坏与层间的脱粘分裂;随着破片着靶速度的提高,碳纤维靶板的压剪耦合破坏比例逐渐增加,拉伸断裂与分层现象逐渐减弱;破片对于8和6 mm厚碳纤维靶的弹道极限速度分别为351.9、264.6 m/s;相同着靶速度下,8 mm厚碳纤维靶的后效毁伤面积大于6 mm厚碳纤维靶的后效毁伤面积,两者之间的差异随着着靶速度的提高而逐渐减小;破片冲击等厚度碳纤维靶时,破片的后效毁伤能力随着靶速度的提高而增强。

不同尺寸HMX基压装装药的烤燃特性
董泽霖, 屈可朋, 胡雪垚, 肖玮, 王奕鑫
2024, 38(2): 025102. doi: 10.11858/gywlxb.20230757
摘要:

为了研究装药尺寸对压装装药烤燃特性的影响,针对HMX基压装装药,建立了压装装药烤燃过程的计算模型,利用Fluent软件对不同装药尺寸的烤燃样弹进行了数值模拟,计算了不同升温速率下装药尺寸对压装装药点火位置、响应温度和响应时间的影响规律。结果表明:在同一升温速率下,HMX基压装炸药装药长径比为1.0时,装药中心响应温度均为最高;装药长径比大于1.0时,装药中心点火温度均随长径比的增加而降低;当长径比增大到一定程度时,装药中心的响应温度趋于恒值。装药的点火位置由升温速率和装药尺寸共同决定,且装药端面与曲面的传热量之比与长径比的平方成反比。当升温缓慢或长径比较小时,装药的点火位置位于装药中心;当升温速率较高且长径比较大时,装药的点火位置逐渐远离装药中心。

H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性
叶青, 王维建, 贾真真, 刘佳林
2024, 38(2): 025201. doi: 10.11858/gywlxb.20230760
摘要:

为探究复杂巷道内多爆源瓦斯爆炸传播特性及热冲击动力学机制,运用计算流体力学软件Fluent,以H型巷道为模型,在巷道内设置同侧、相对、对角3种双爆源布置方式。研究发现:巷道内的2处爆源同时起爆后,前驱冲击波沿巷道未燃区传播,当两股冲击波相遇时,压力叠加,冲量抵消,在压力叠加区火焰传播受阻,导致火焰传播速度放缓甚至反向;相较于单爆源爆炸,双爆源工况中导致巷道内特定区域如联络巷、岔口中心及其边壁的压力更高;同侧和对角布置工况下的压力极值区出现在巷道封闭端,相对布置工况下的压力极值区出现在分岔口中心处。

圆柱形锂电池在局部压痕下的安全性实验研究
李杰, 张云龙, 袁博兴, 汤元会, 何永全
2024, 38(2): 025301. doi: 10.11858/gywlxb.20230754
摘要:

锂电池局部挤压是汽车碰撞引发的主要损伤形式。为了明确锂电池在受到局部挤压时的安全性能,利用自研的机械滥用实验平台,对18650锂电池进行局部压痕实验,以渐进压缩的方式分析其失效过程,得到了失效过程及温度演变规律,讨论了电池荷电状态、加载速度、压痕位置和压头尺寸对电池安全的影响。结果表明:锂电池受局部挤压后有明显的热失控规律,失效后不会立即发生热失控,存在一定的反应时间;电池荷电状态与热失控剧烈程度成正相关,加载速度决定了电池的失效时间;靠近电池负极一端受到损伤时更易引发热失控现象,且受损面积较大时温度更高。实验结果可为锂电池包的安全性设计提供有益的建议。

分层一次爆破成井精确延时爆破参数研究
李祥龙, 颜世骞, 王建国, 姚永鑫, 黄原明
2024, 38(2): 025302. doi: 10.11858/gywlxb.20230748
摘要:

为了研究精确延时微差起爆对一次成井分层爆破效果的影响,理论计算了层内孔间微差时间,利用LS-DYNA软件,采用JH-2岩石模型,模拟了大直径深孔一次成井爆破中的精确延时分层起爆,分析了井筒岩石的损伤演化过程,试验验证了延期时间参数。结果表明,层间采用18 ms延期时间时,爆破效果最佳。结合理论分析和数值模拟结果确定了一次成井的延期时间方案。井筒的成形大致相似,其特征截面面积相似度在83.4%~96.6%之间。通过理论分析、数值模拟和现场试验获得了一次爆破成井工程的精确延时微差分层爆破方法,具有实际应用价值。