Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究

贾杰 智小琦 郝春杰 李劲 郭璐 柳星河

贾杰, 智小琦, 郝春杰, 李劲, 郭璐, 柳星河. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究[J]. 高压物理学报, 2024, 38(2): 025101. doi: 10.11858/gywlxb.20230764
引用本文: 贾杰, 智小琦, 郝春杰, 李劲, 郭璐, 柳星河. Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究[J]. 高压物理学报, 2024, 38(2): 025101. doi: 10.11858/gywlxb.20230764
JIA Jie, ZHI Xiaoqi, HAO Chunjie, LI Jin, GUO Lu, LIU Xinghe. Experimental Study on the Penetration of Zr-Based Amorphous Fragment into Carbon Fiber Composite Target and Post-Effect Aluminum Target[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025101. doi: 10.11858/gywlxb.20230764
Citation: JIA Jie, ZHI Xiaoqi, HAO Chunjie, LI Jin, GUO Lu, LIU Xinghe. Experimental Study on the Penetration of Zr-Based Amorphous Fragment into Carbon Fiber Composite Target and Post-Effect Aluminum Target[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025101. doi: 10.11858/gywlxb.20230764

Zr基非晶破片对碳纤维复合靶及后效铝靶的侵彻试验研究

doi: 10.11858/gywlxb.20230764
基金项目: 中北大学第18届研究生科技立项(20221805)
详细信息
    作者简介:

    贾 杰(1997-),男,硕士研究生,主要从事弹箭高效毁伤研究. E-mail:565466907@qq.com

    通讯作者:

    智小琦(1963-),女,博士,教授,主要从事武器毁伤与装药技术研究. E-mail:zxq4060@sina.com

  • 中图分类号: O385

Experimental Study on the Penetration of Zr-Based Amorphous Fragment into Carbon Fiber Composite Target and Post-Effect Aluminum Target

  • 摘要: Zr基非晶破片是一种新兴的活性高效毁伤元,其着靶速度达到一定阈值时会发生燃烧反应并破碎,从而大幅提高其后效毁伤能力。为研究Zr基非晶破片对碳纤维增强复合材料的侵彻破坏机理及后效毁伤能力,利用弹道枪加载球形破片,分别以496.4~1085.8 m/s、571.4~1103.9 m/s的速度范围撞击8和6 mm厚的碳纤维复合靶,并布置2 mm厚LY12铝靶板作为后效靶,以比较破片在不同工况下的后效毁伤能力。实验结果表明:碳纤维靶受活性破片冲击时,其迎弹面的破坏形式主要是压缩失效与剪切失效的耦合破坏,其背弹面的破坏形式主要是拉伸失效破坏与层间的脱粘分裂;随着破片着靶速度的提高,碳纤维靶板的压剪耦合破坏比例逐渐增加,拉伸断裂与分层现象逐渐减弱;破片对于8和6 mm厚碳纤维靶的弹道极限速度分别为351.9、264.6 m/s;相同着靶速度下,8 mm厚碳纤维靶的后效毁伤面积大于6 mm厚碳纤维靶的后效毁伤面积,两者之间的差异随着着靶速度的提高而逐渐减小;破片冲击等厚度碳纤维靶时,破片的后效毁伤能力随着靶速度的提高而增强。

     

  • 图  破片、弹托及测试弹体

    Figure  1.  Fragment, sabot and test cartridge

    图  靶板布置

    Figure  2.  Layout of target plate

    图  试验系统示意图

    Figure  3.  Schematic diagram of the test system

    图  Zr基非晶破片侵彻碳纤维靶板的初始速度与剩余速度的关系曲线

    Figure  4.  Initial velocity versus residual velocity curves for zirconium-based amorphous fragments penetrating a carbon fiber composite target

    图  碳纤维靶的典型破坏状态

    Figure  5.  Typical damage state of carbon fiber composite targets

    图  8 mm厚碳纤维靶试验的后效靶毁伤形态

    Figure  6.  Post-effect target damage patterns for 8 mm thick carbon fiber composite target tests

    图  6 mm厚碳纤维靶试验的后效靶毁伤形态

    Figure  7.  Post-effect target damage patterns for 6 mm thick carbon fiber composite target tests

    图  二值化处理过程

    Figure  8.  Binarization process

    图  不同厚度碳纤维工况下破片着靶速度与后效靶破孔面积的关系

    Figure  9.  Relationship between the fragmentation speed and the post-effect target broken hole area under different thicknesses of carbon fiber composite conditions

    图  10  对照试验组中破片侵彻不同厚度碳纤维后在后效靶上造成的破孔面积

    Figure  10.  Area of broken holes in the post-effect target caused by broken pieces penetrating different thicknesses of carbon fiber composite targets in the control test group

    图  11  破片以1100 m/s侵彻不同厚度碳纤维靶的图像

    Figure  11.  Video frames of fragments penetrating carbon fiber composite targets of different thicknesses at 1100 m/s

    表  1  碳纤维复合材料性能参数

    Table  1.   Performance parameters of carbon fiber composites

    E1/GPa E2/GPa G/GPa XT/GPa XC/GPa YT/MPa YC/MPa SC/MPa ν ρ/(kg∙m−3)
    125 7.8 5.6 2.5 1.1 72 220 92 0.316 1600
    下载: 导出CSV

    表  2  试验数据

    Table  2.   Test data

    Target plate thickness/mmTest No.Impact
    velocity/(m∙s−1)
    Residual
    velocity/(m∙s−1)
    Perforation
    diameter/mm
    811085.8764.910.17
    21008.9688.39.89
    3904.3530.69.68
    4790.3515.79.80
    5691.1443.29.64
    6679.7411.69.75
    7496.4123.19.56
    681103.9931.510.14
    9936.6724.610.07
    10767.5590.79.85
    11695.3537.19.67
    12571.4442.69.57
    下载: 导出CSV

    表  3  Zr基非晶破片对碳纤维靶板的弹道极限速度及拟合参数

    Table  3.   Ballistic limits and fitting parameters of zirconium-based amorphous fragments on carbon fiber composite targets

    Target plate thickness/mm a v50/(m·s−1)
    8 0.69 351.9
    6 0.84 264.6
    下载: 导出CSV

    表  4  计算得出的后效靶破孔面积

    Table  4.   Calculated area of broken holes in the post-effect target

    Target plate thickness/mm No. Shole/mm2 Target plate thickness/mm No. Shole/mm2
    8 1 528.1 6 8 439.2
    2 493.9 9 312.4
    3 457.5 10 156.0
    4 432.2 11 89.5
    5 367.6 12 80.7
    6 213.8
    7 0
    下载: 导出CSV
  • [1] TOGO H, ZHANG Y, KAWAMURA Y, et al. Properties of Zr-based bulk metallic glass under shock compression [J]. Materials Science and Engineering: A, 2007, 449: 264–268.
    [2] MATTERN N, KUEHN U, HERMANN H, et al. Thermal behavior and glass transition of Zr-based bulk metallic glasses [J]. Materials Science and Engineering: A, 2004, 375: 351–354.
    [3] QIAO J W, ZHANG Y, LI J H, et al. Strain rate response of a Zr-based composite fabricated by Bridgman solidification [J]. International Journal of Minerals Metallurgy and Materials, 2010, 17(2): 214–219. doi: 10.1007/s12613-010-0216-9
    [4] CHEN X, DU C X, CHENG C, et al. Impact-induced chemical reaction behavior of ZrTiNiCuBe bulk metallic glass fragments impacting on thin plates [J]. Materiali in Tehnologije, 2018, 52(6): 737–743.
    [5] WEI H Y, YOO C S. Kinetics of small single particlecombustion of zirconium alloy [J]. Journal of Applied Physics, 2012, 111(2): 1–13.
    [6] WEI H Y, YOO C S. Dynamic responses of reactive metallic structures under thermal and mechanical ignitions [J]. Journal of Materials Research, 2012, 27(21): 2705–2717. doi: 10.1557/jmr.2012.302
    [7] 张云峰, 罗兴柏, 刘国庆, 等. W/ZrNiAlCu亚稳态合金复合材料破片对RHA靶的侵彻释能特性 [J]. 爆炸与冲击, 2020, 40(2): 023301.

    ZHANG Y F, LUO X B, LIU G Q, et al. Penetration and energy release effect of W/ZrNiAlCu metastable reactive alloy composite rragment against RHA target [J]. Explosion and Shock Waves, 2020, 40(2): 023301.
    [8] 郭磊, 王传婷, 何勇, 等. Zr55Cu30Ni5Al10活性破片对间隔防护结构破坏特性研究 [J]. 航天器环境工程, 2020, 37(6): 582–588.

    GUO L, WANG C T, HE Y, et al. The failure characteristics of spacing protective structures impacted by Zr55Cu30Ni5Al10 active fragments [J]. Spacecraft Environment Engineering, 2020, 37(6): 582–588.
    [9] 罗普光, 毛亮, 李国杰, 等. 锆基非晶活性破片侵靶特性研究 [J]. 兵器装备工程学报, 2022, 43(3): 42–46.

    LUO P G, MAO L, LI G J, et al. Research on damage characteristics of Zr-base amorphous reactive fragment after impact target [J].Journal of Ordnance Equipment Engineering, 2022, 43(3): 42–46.
    [10] 杨林, 于述贤, 范群波. Zr77.1Cu13Ni9.9非晶合金破片侵彻LY12铝合金及TC4钛合金靶板毁伤后效及机理对比研究 [J]. 北京理工大学学报自然版, 2023, 43(4): 417–428.

    YANG L, YU S X, FAN Q B. Damage effect and mechanism of Zr77.1Cu13Ni9.9 bulk metallic glasses fragment penetrating LY12 aluminum alloy and TC4 titanium alloy target plate [J]. Transactions of Beijing Institute of Technology, 2023, 43(4): 417–428.
    [11] 张佐光, 霍刚, 张大兴. 纤维复合材料的弹道吸能研究 [J]. 复合材料学报, 1998, 15(2): 74–81.

    ZHANG Z G, HUO G, ZHANG D X. Ballistic energy absorption study of fiber composites [J]. Acta Materiae Compositae Sinica, 1998, 15(2): 74–81.
    [12] 黄晨光, 施媚梧, 段祝平. 头盔用复合材料抗侵彻性能研究进展 [J]. 力学进展, 2000, 30(2): 239–251.

    HUANG C G, SHI M W, DUAN Z P. Review on the dynamic behaviors and penetration of the composite shelmet under impact loading [J]. Advances in Mechanics, 2000, 30(2): 239–251.
    [13] 孙浩伟, 李涛. 碳纤维及其复合材料在国外军民领域的应用 [J]. 纤维复合材料, 2005, 22(3): 65−67.

    SUN H W, LI T. Application of carbon fiber and its composites in overseas military and civil fields [J]. Fiber Composites, 2005, 22(3): 65−67.
    [14] 黄涛, 陈威, 彭帅,等. 典型舱室在战斗部内爆下的载荷及毁伤特性试验研究 [J]. 中国舰船研究,2023, 18(6): 167–176.

    HUANG T, CHEN W, PENG S, et al. Testing investigation on load and damage characteristic of typical cabins under warhead internal blast [J]. Chinese Journal of Ship Research, 2023, 18(6): 167–176.
    [15] 王兆纶. 大型舰船功能毁伤评估方法研究[D]. 北京: 军事科学院, 2023.

    WANG Z L. Research on evaluation methods for functional damage of large warships [D]. Beijing: Academy of Military Sciences, 2023.
    [16] RECHT R F, IPSON T W. Ballistic perforation dynamics [J]. ASME Journal of Applied Mechanics, 1963, 30(3): 384–390.
    [17] 张猛, 王金华, 俞森彬, 等. 自适应阈值二值法提取湍流火焰前锋面结构 [J]. 燃烧科学与技术, 2016, 22(3): 212–217.

    ZHANG M, WANG J H, YU S B, et al. Flame front tracking of turbulent premixed flames using adaptive threshold binarization [J]. Journal of Combustion Science and Technology, 2016, 22(3): 212–217.
  • 加载中
图(11) / 表(4)
计量
  • 文章访问数:  95
  • HTML全文浏览量:  29
  • PDF下载量:  24
出版历程
  • 收稿日期:  2023-10-22
  • 修回日期:  2023-11-10
  • 网络出版日期:  2024-03-29
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回