Prediction of Superconducting RbBSi Compounds under Pressure
doi: 10.11858/gywlxb.20230765
-
摘要: 对RbBSi化合物在0~100 GPa压力范围内进行了广泛的群体智能结构搜索。提出了RbBSi的3种不同相,并通过第一性原理计算了其稳定性、电子结构和潜在的超导电性。在所研究的压力范围内,所有预测相在热力学和动力学上都是稳定的。3个相的能带都穿过费米能级,表明结构具备金属性。此外,P4/nmm-RbBSi在常压下的超导转变温度为14.4 K。这项工作加深了人们对碱金属硼硅化合物在超导体领域的理解,有望拓宽碱金属硼硅化合物在超导体领域的应用。Abstract: In this work, we have performed extensive swarm-intelligence structures searching simulations on the RbBSi compounds within the pressure range from 0 to 100 GPa. We have proposed three different phases of RbBSi, of which the stability, the electronic structure and the potential superconductivity were calculated by first-principles calculations. All predicted phases are thermodynamically and dynamically stable within the studied pressure range. The bands of the three phases crossing the Fermi level indicate the structures are all metallic. In addition,P4/nmm-RbBSi is a superconductor withTc of 14.4 K at ambient pressure. This work extends the understanding and potential application of alkali metal boron-silicide compounds in the field of superconductor.
-
Table 1. Detailed structure information of the predicted RbBSi compounds at standard atmospheric pressure
Space group Lattice parameters Atomic positions P63/mmc a = b = 3.549 Å,c = 11.365 Å
α = β = 90°,γ = 120°Rb 2a (0, 0, 0)
B 2d (0.667, 0.333, 0.250)
Si 2c (0.667, 0.333, 0.750)C2/m a = 9.004 Å,b = 3.518 Å,c = 11.226 Å
α = γ = 90°,β = 109.3642°Rb 4i (0.532, 0, 0.770)
B 4i (0.903, 0, 0.489)
Si 4i (0.770, 0.500, 0.424)P4/nmm a = b = 3.752 Å,c = 11.170 Å
α = β = γ = 90°Rb 8j (0, 0.500, 0.736)
B 8j (0, 0.500, 0.084)
Si 4d (0.500, 0.500, 0) -
[1] LARBALESTIER D, CANFIELD P C. Superconductivity at 100—where we’ve been and where we’re going [J]. MRS Bulletin, 2011, 36(8): 590–593. doi: 10.1557/mrs.2011.174 [2] ANLAGE S M. The physics and applications of superconducting metamaterials [J]. Journal of Optics, 2011, 13(2): 024001. doi: 10.1088/2040-8978/13/2/024001 [3] HASSENZAHL W V, HAZELTON D W, JOHNSON B K, et al. Electric power applications of superconductivity [J]. Proceedings of the IEEE, 2004, 92(10): 1655–1674. doi: 10.1109/JPROC.2004.833674 [4] GREENBERG Y S. Application of superconducting quantum interference devices to nuclear magnetic resonance [J]. Reviews of Modern Physics, 1998, 70(1): 175–222. doi: 10.1103/RevModPhys.70.175 [5] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001 [6] JEON H, WANG C Z, LIU S Y, et al. Electron-phonon coupling and superconductivity in an alkaline earth hydride CaH6 at high pressures [J]. New Journal of Physics, 2022, 24(8): 083048. doi: 10.1088/1367-2630/ac8a0c [7] QIAN S F, SHENG X W, YAN X Z, et al. Theoretical study of stability and superconductivity of ScH n ( n=4–8) at high pressure [J]. Physical Review B, 2017, 96(9): 094513. doi: 10.1103/PhysRevB.96.094513 [8] TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advanced Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832 [9] MA L, WANG K, XIE Y, et al. High-Tc superconductivity in clathrate calcium hydride CaH6 [EB/OL]. arXiv: 2103.16282, (2021-11-04)[2023-10-24]. https://arxiv.org/abs/2103.16282. [10] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. [11] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8 [12] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001 [13] LIU H Y, NAUMOV I I, GEBALLE Z M, et al. Dynamics and superconductivity in compressed lanthanum superhydride [J]. Physical Review B, 2018, 98(10): 100102. doi: 10.1103/PhysRevB.98.100102 [14] LU S Y, LIU H Y, NAUMOV I I, et al. Superconductivity in dense carbon-based materials [J]. Physical Review B, 2016, 93(10): 104509. doi: 10.1103/PhysRevB.93.104509 [15] SANO K, MASUDA Y, ITO H. Superconductivity of carbon compounds with sodalite structure [J]. Journal of the Physical Society of Japan, 2022, 91(8): 083703. doi: 10.7566/JPSJ.91.083703 [16] LI X, YONG X, WU M, et al. Hard BN clathrate superconductors [J]. The Journal of Physical Chemistry Letters, 2019, 10(10): 2554–2560. doi: 10.1021/acs.jpclett.9b00619 [17] ZHU L, STROBEL T A, COHEN R E. Prediction of an extended ferroelectric clathrate [J]. Physical Review Letters, 2020, 125(12): 127601. doi: 10.1103/PhysRevLett.125.127601 [18] CUI X Y, HILLEKE K P, WANG X Y, et al. RbB3Si3: an alkali metal borosilicide that is metastable and superconducting at 1 atm [J]. The Journal of Physical Chemistry C, 2020, 124(27): 14826–14831. doi: 10.1021/acs.jpcc.0c04617 [19] ZIPOLI F, BERNASCONI M, BENEDEK G. Electron-phonon coupling in halogen-doped carbon clathrates from first principles [J]. Physical Review B, 2006, 74(20): 205408. doi: 10.1103/PhysRevB.74.205408 [20] ZHU L, BORSTAD G M, LIU H Y, et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials [J]. Science Advances, 2020, 6(2): eaay8361. doi: 10.1126/sciadv.aay8361 [21] ZHANG P Y, LI X, YANG X, et al. Path to high- Tc superconductivity via Rb substitution of guest metal atoms in the SrB3C3 clathrate [J]. Physical Review B, 2022, 105(9): 094503. doi: 10.1103/PhysRevB.105.094503 [22] WANG J N, YAN X W, GAO M. High-temperature superconductivity in SrB3C3 and BaB3C3 predicted from first-principles anisotropic Migdal-Eliashberg theory [J]. Physical Review B, 2021, 103(14): 144515. doi: 10.1103/PhysRevB.103.144515 [23] KIEFER F, KARTTUNEN A J, DÖBLINGER M, et al. Bulk synthesis and structure of a microcrystalline allotrope of germanium ( m- allo-Ge) [J]. Chemistry of Materials, 2011, 23(20): 4578–4586. doi: 10.1021/cm201976x [24] ZHANG H J, REN J D, WU L L, et al. Predicted semiconductor to metal transition from LiBSi2 to RbBSi2 by first-principles calculations [J]. Computational Materials Science, 2016, 124: 267–272. doi: 10.1016/j.commatsci.2016.08.002 [25] KARTTUNEN A J, FÄSSLER T F, LINNOLAHTI M, et al. Structural principles of semiconducting group 14 clathrate frameworks [J]. Inorganic Chemistry, 2011, 50(5): 1733–1742. doi: 10.1021/ic102178d [26] YAN H Y, CHEN L, WEI Z T, et al. Superhard high-pressure structures of beryllium diborocarbides [J]. Vacuum, 2020, 180: 109617. doi: 10.1016/j.vacuum.2020.109617 [27] LAZICKI A, YOO C S, CYNN H, et al. Search for superconductivity in LiBC at high pressure: diamond anvil cell experiments and first-principles calculations [J]. Physical Review B, 2007, 75(5): 054507. doi: 10.1103/PhysRevB.75.054507 [28] WANG Y C, LV J, ZHU L, et al. Crystal structure prediction via particle-swarm optimization [J]. Physical Review B, 2010, 82(9): 094116. doi: 10.1103/PhysRevB.82.094116 [29] WANG Y C, LV J, ZHU L, et al. CALYPSO: a method for crystal structure prediction [J]. Computer Physics Communications, 2012, 183(10): 2063–2070. doi: 10.1016/j.cpc.2012.05.008 [30] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169 [31] PERDEW J P, CHEVARY J A, VOSKO S H, et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation [J]. Physical Review B, 1992, 46(11): 6671–6687. doi: 10.1103/PhysRevB.46.6671 [32] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758 [33] TOGO A, OBA F, TANAKA I. First-principles calculations of the ferroelastic transition between rutile-type and CaCl2-type SiO2 at high pressures [J]. Physical Review B, 2008, 78(13): 134106. doi: 10.1103/PhysRevB.78.134106 [34] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics:Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502 [35] DEGTYAREVA O. Crystal structure of simple metals at high pressures [J]. High Pressure Research, 2010, 30(3): 343–371. doi: 10.1080/08957959.2010.508877 [36] OGANOV A R, SOLOZHENKO V L, GATTI C, et al. The high-pressure phase of boron, γ-B28: disputes and conclusions of 5 years after discovery [J]. Journal of Superhard Materials, 2011, 33(6): 363–379. doi: 10.3103/S1063457612060019 [37] CUI X Y, ZHANG M, GAO L L. Exploration of AB3Si3 (A=Na/K/Rb/Cs) compounds under moderate pressure [J]. Physical Chemistry Chemical Physics, 2023, 25(35): 23847–23854. doi: 10.1039/D3CP02930A