新型锕填充硼碳笼型化合物的超导电性

张王颖 刘朝厅 陈蕊 蒋成澳 李培芳 闫岩

张王颖, 刘朝厅, 陈蕊, 蒋成澳, 李培芳, 闫岩. 新型锕填充硼碳笼型化合物的超导电性[J]. 高压物理学报, 2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766
引用本文: 张王颖, 刘朝厅, 陈蕊, 蒋成澳, 李培芳, 闫岩. 新型锕填充硼碳笼型化合物的超导电性[J]. 高压物理学报, 2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766
ZHANG Wangying, LIU Chaoting, CHEN Rui, JIANG Chengao, LI Peifang, YAN Yan. Superconductivity in Novel Actinide Filled Boron Carbon Clathrates[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766
Citation: ZHANG Wangying, LIU Chaoting, CHEN Rui, JIANG Chengao, LI Peifang, YAN Yan. Superconductivity in Novel Actinide Filled Boron Carbon Clathrates[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020108. doi: 10.11858/gywlxb.20230766

新型锕填充硼碳笼型化合物的超导电性

doi: 10.11858/gywlxb.20230766
基金项目: 吉林省科技发展计划项目(20230101183JC,20230508145RC)
详细信息
    作者简介:

    张王颖(1999-),女,硕士研究生,主要从事高压下材料的结构设计和物理性质研究.E-mail:wangying_z@163.com

    通讯作者:

    闫 岩(1981-),女,博士,教授,主要从事高压下材料的结构设计和物理性质研究.E-mail:yanyan1110@126.com

  • 中图分类号: O521.2

Superconductivity in Novel Actinide Filled Boron Carbon Clathrates

  • 摘要: Ac元素作为锕系第一号元素,AcH10的超导转变温度(Tc)达到251 K,是潜在的室温超导体。XB3C3(X表示不同的金属掺杂元素)是新发现的sp3笼型化合物,同时具有强共价特性和超导特性,是潜在的高温超导材料。采用第一性原理密度泛函理论,探索以XB3C3、XB2C4和XB4C2笼型结构为原型、引入Ac元素掺杂的AcB3C3、AcB2C4和AcB4C2的晶体结构、晶格动力学、电子性质和超导特性。研究发现:AcB2C4在0~200 GPa区间内难以合成;常压下AcB3C3表现为间接带隙半导体,带隙宽度约为1.154 eV。根据力学稳定性判据可知,AcB3C3和AcB4C2是弹性稳定的具有较高硬度和刚度的脆性材料。同时,常压下AcB4C2表现出超导特性,超导转变温度达到1.565 K。随着压强的增加,超导转变温度呈现先降低后升高的变化趋势,其超导机制由中频声子主导转变为低频与中频声子的共同作用。研究结果可为实验合成笼型化合物超导材料提供理论指导,为探索具有高超导转变温度的超导材料提供新思路。

     

  • 图  压强为 0 GPa时AcB3C3、AcB2C4和AcB4C2的晶体结构

    Figure  1.  Crystal structures of AcB3C3, AcB2C4, and AcB4C2 at 0 GPa

    图  不同压力下AcBxCyx=2, 3, 4;y=4, 3, 2)体系的分解焓(当p=0 GPa时,参考相为fcc-Ac单质相、α-B12单质相和六方石墨相;当p=100 GPa和p=200 GPa时,参考相为fcc-Ac单质相、α-Ga型B单质相和金刚石相)

    Figure  2.  Decomposition enthalpy diagrams of AcBxCy (x=2, 3, 4 and y=4, 3, 2) system at different pressures ( At 0 GPa, the reference phases are the fcc-Ac elemental phase, α-B12 elemental phase, and hexagonal graphite phase. At 100 and 200 GPa, the reference phases are the fcc-Ac elemental phase, α-Ga type B elemental phase, and diamond phase.)

    图  AcB3C3和AcB4C2在0 GPa压强下的声子色散谱

    Figure  3.  Phonon dispersion spectra of AcB3C3 and AcB4C2 at 0 GPa

    图  AcB3C3和AcB4C2在0 GPa下的原子轨道投影电子能带和分立电子态密度

    Figure  4.  Atomic orbital projected electron band and discrete electron density of state of AcB3C3 and AcB4C2 at 0 GPa

    图  0 GPa时Ac-6d轨道、B-2p轨道和C-2p轨道在AcB4C2的费米面上的权重

    Figure  5.  Weights of Ac-6d orbitals, B-2p orbitals, and C-2p orbitals on the Fermi surfaces of AcB4C2 at 0 GPa

    图  AcB3C3和AcB4C2在0 GPa下的三维局域电荷密度

    Figure  6.  Three-dimensional electron localization function of AcB3C3 and AcB4C2 at 0 GPa

    图  (a) 不同压强下AcB4C2的声子频率对电声耦合参数λ的贡献, (b) p=0 GPa时AcB4C2的超导特性

    Figure  7.  (a) Contribution of phonon frequencies of AcB4C2 to electroacoustic coupling parameters λ at different pressures,(b) superconducting properties of AcB4C2 at 0 GPa

    表  1  常压下AcB3C3和AcB4C2的物性参数

    Table  1.   Physical parameters of AcB3C3 and AcB4C2 at ambient pressure

    System C11/GPa C12/GPa C13/GPa C16/GPa C33/GPa C44/GPa
    $Pm \overline{3} n $-AcB3C3 859.97 185.78 327.12
    I4/mmm-AcB4C2 715.43 241.16 114.38 0 814.58 274.96
    System C66/GPa B/GPa G/GPa E/GPa ν B/G
    $Pm \overline{3} n $-AcB3C3 410.51 331.11 782.85 0.18 1.24
    I4/mmm-AcB4C2 303.83 353.92 289.12 681.72 0.18 1.22
    下载: 导出CSV

    表  2  不同压强下AcB4C2的物性参数

    Table  2.   Physical parameters of of AcB4C2 at different pressures

    Space group p/GPa ωlog〉/K λ Tc/K N(EF)/
    [states/(spin·Ry·Unit)]
    μ*=0.10 μ*=0.13
    I4/mmm 0 747.309 0.358 1.565 0.520 6.153
    50 862.377 0.307 0.515 0.094 5.804
    100 895.107 0.302 0.455 0.076 5.872
    150 896.673 0.316 0.700 0.147 6.206
    200 883.648 0.341 1.304 0.372 6.557
    下载: 导出CSV
  • [1] 赵文迪, 段德芳, 崔田. 高压下氢基高温超导体研究的新进展 [J]. 高压物理学报, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727

    ZHAO W D, DUAN D F, CUI T. New developments of hydrogen-based high-temperature superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
    [2] SHIPLEY A M, HUTCHEON M J, NEEDS R J, et al. High-throughput discovery of high-temperature conventional superconductors [J]. Physical Review B, 2021, 104(5): 054501. doi: 10.1103/PhysRevB.104.054501
    [3] SONG P, HOU Z F, HONGO K, et al. (La, Th)H10: the potential high-Tc superconductors stabilized thermodynamically below 200 GPa [EB/OL]. arXiv: 2210.06371. (2022-10-18)[2023-10-24]. https://arxiv.org/abs/2210.06371.
    [4] HAI Y L, LU N, TIAN H L, et al. Cage structure and near room-temperature superconductivity in TbH n ( n=1–12) [J]. The Journal of Physical Chemistry C, 2021, 125(6): 3640–3649. doi: 10.1021/acs.jpcc.1c00645
    [5] KRUGLOV I A, SEMENOK D V, SONG H, et al. Superconductivity of LaH10 and LaH16 polyhydrides [J]. Physical Review B, 2020, 101(2): 024508. doi: 10.1103/PhysRevB.101.024508
    [6] PAPACONSTANTOPOULOS D A, MEHL M J, CHANG P H. High-temperature superconductivity in LaH10 [J]. Physical Review B, 2020, 101(6): 060506(R).
    [7] CUI H J, LI M L, ZHENG F W, et al. Superconductivity in Th-H and Pu-H compounds under high-pressure conditions: a first-principles study [J]. Physica Status Solidi (B), 2023, 260(2): 2200452. doi: 10.1002/pssb.202200452
    [8] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [9] FENG Y J, JIANG M J, DING H B, et al. High-temperature superconductivity in H3S up to 253 K at a pressure of 140 GPa by doping holes [J]. The Journal of Physical Chemistry C, 2022, 126(48): 20702–20709. doi: 10.1021/acs.jpcc.2c06650
    [10] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [11] TSUPPAYAKORN-AEK P, PINSOOK U, LUO W, et al. Superconductivity of superhydride CeH10 under high pressure [J]. Materials Research Express, 2020, 7(8): 086001. doi: 10.1088/2053-1591/ababc2
    [12] SEMENOK D V, KVASHNIN A G, KRUGLOV I A, et al. Actinium hydrides AcH10, AcH12, and AcH16 as high-temperature conventional superconductors [J]. The Journal of Physical Chemistry Letters, 2018, 9(8): 1920–1926. doi: 10.1021/acs.jpclett.8b00615
    [13] TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advanced Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832
    [14] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [15] JEON H, WANG C Z, LIU S Y, et al. Electron-phonon coupling and superconductivity in an alkaline earth hydride CaH6 at high pressures [J]. New Journal of Physics, 2022, 24(8): 083048. doi: 10.1088/1367-2630/ac8a0c
    [16] LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712–174718. doi: 10.1063/1.4874158
    [17] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
    [18] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [19] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [20] MA J Y, KUANG J L, CUI W W, et al. Metal-element-incorporation induced superconducting hydrogen clathrate structure at high pressure [J]. Chinese Physics Letters, 2021, 38(2): 027401. doi: 10.1088/0256-307X/38/2/027401
    [21] YAN X Z, ZHANG Z L, CHEN Y M, et al. Prediction of superconductivity in clathrate er hydrides under high pressure [J]. Crystals, 2023, 13(5): 792. doi: 10.3390/cryst13050792
    [22] ZHONG X, SUN Y, IITAKA T, et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides [J]. Journal of the American Chemical Society, 2022, 144(29): 13394–13400. doi: 10.1021/jacs.2c05834
    [23] ZHU X, FENG S Q, LU G, et al. High Tc superconductivity and substructure of Bi-Sr-Ca-Cu-O system [J]. Modern Physics Letters B, 1988, 2(2): 563–569. doi: 10.1142/S0217984988000175
    [24] LIU X H, HUANG X W, SONG P, et al. Strong electron-phonon coupling superconductivity in compressed α-MoB2 induced by double van hove singularities [J]. Physical Review B, 2022, 106(6): 064507. doi: 10.1103/PhysRevB.106.064507
    [25] BAZHIROV T, SAKAI Y, SAITO S, et al. Electron-phonon coupling and superconductivity in Li-intercalated layered borocarbide compounds [J]. Physical Review B, 2014, 89(4): 045136. doi: 10.1103/PhysRevB.89.045136
    [26] QUAN Y D, PICKETT W E. Li2 x BC3: prediction of a second MgB2-class high-temperature superconductor [J]. Physical Review B, 2020, 102(14): 144504. doi: 10.1103/PhysRevB.102.144504
    [27] ZHU L, LIU H Y, SOMAYAZULU M, et al. Superconductivity in SrB3C3 clathrate [J]. Physical Review Research, 2023, 5(1): 013012. doi: 10.1103/PhysRevResearch.5.013012
    [28] ZHU L, BORSTAD G M, LIU H Y, et al. Carbon-boron clathrates as a new class of sp3-bonded framework materials [J]. Science Advances, 2020, 6(2): 8361–8366. doi: 10.1126/sciadv.aay8361
    [29] WANG J N, YAN X W, GAO M. High-temperature superconductivity in SrB3C3 and BaB3C3 predicted from first-principles anisotropic migdal-eliashberg theory [J]. Physical Review B, 2021, 103(14): 144515. doi: 10.1103/PhysRevB.103.144515
    [30] DI CATALDO S, QULAGHASI S, BACHELET G B, et al. High- Tc superconductivity in doped boron-carbon clathrates [J]. Physical Review B, 2022, 105(6): 064516. doi: 10.1103/PhysRevB.105.064516
    [31] GENG N S, HILLEKE K P, ZHU L, et al. Conventional high-temperature superconductivity in metallic, covalently bonded, binary-guest C-B clathrates [J]. Journal of the American Chemical Society, 2023, 145(3): 1696–1706. doi: 10.1021/jacs.2c10089
    [32] GAI T T, GUO P J, YANG H C, et al. Van Hove singularity induced phonon-mediated superconductivity above 77 K in hole-doped SrB3C3 [J]. Physical Review B, 2022, 105(22): 224514. doi: 10.1103/PhysRevB.105.224514
    [33] ZHANG P Y, LI X, YANG X, et al. Path to high Tc superconductivity via Rb substitution of guest metal atoms in SrB3C3 clathrate [J]. Physical Review B, 2022, 105(9): 094503. doi: 10.1103/PhysRevB.105.094503
    [34] CUI Z, ZHANG X H, SUN Y H, et al. Prediction of novel boron-carbon based clathrates [J]. Physical Chemistry Chemical Physics, 2022, 24(27): 16884–16890. doi: 10.1039/D2CP01783K
    [35] STROBEL T A, ZHU L, GUŃKA P A, et al. A lanthanum-filled carbon-boron clathrate [J]. Angewandte Chemie International Edition, 2021, 60(6): 2877–2881. doi: 10.1002/anie.202012821
    [36] ZHU L, STROBEL T A, COHEN R E. Prediction of an extended ferroelectric clathrate [J]. Physical Review Letters, 2020, 125(12): 127601. doi: 10.1103/PhysRevLett.125.127601
    [37] ORIO M, PANTAZIS D A, NEESE F. Density functional theory [J]. Photosynthesis Research, 2009, 102(2/3): 443–453. doi: 10.1007/s11120-009-9404-8
    [38] KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [39] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [40] ROSTGAARD C. The projector augmented-wave method [EB/OL]. arXiv: 0910.1921. (2009-10-12)[2024-10-24]. https://arxiv.org/abs/0910.1921.
    [41] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [42] MARGINE E R, GIUSTINO F. Anisotropic migdal-eliashberg theory using wannier functions [J]. Physical Review B, 2013, 87(2): 024505. doi: 10.1103/PhysRevB.87.024505
    [43] GHORAI A. Calculation of parameters of the Ashcroft and Heine-Abarenkov model potential for fcc actinium [J]. Philosophical Magazine Letters, 2021, 101(7): 287–292. doi: 10.1080/09500839.2021.1917781
    [44] OGANOV A R, CHEN J H, GATTI C, et al. Ionic high-pressure form of elemental boron [J]. Nature, 2009, 457(7231): 863–867. doi: 10.1038/nature07736
    [45] 陈蔚然. 石墨的晶体结构 [J]. 炭素技术, 1990(4): 39–40. doi: 10.14078/j.cnki.1001-3741.1990.04.014

    CHEN W R. Crystal structure of graphite [J]. Carbon Techniques, 1990(4): 39–40. doi: 10.14078/j.cnki.1001-3741.1990.04.014
    [46] LYNCH R W, DRICKAMER H G. Effect of high pressure on the lattice parameters of diamond, graphite, and hexagonal boron nitride [J]. The Journal of Chemical Physics, 1966, 44(1): 181–184. doi: 10.1063/1.1726442
    [47] TIAN Y J, XU B, ZHAO Z S. Microscopic theory of hardness and design of novel superhard crystals [J]. International Journal of Refractory Metals and Hard Materials, 2012, 33: 93–106. doi: 10.1016/j.ijrmhm.2012.02.021
    [48] LI K Y, WANG X T, ZHANG F F, et al. Electronegativity identification of novel superhard materials [J]. Physical Review Letters, 2008, 100(23): 235504. doi: 10.1103/PhysRevLett.100.235504
    [49] 刘然. 二维Li插层硼碳化合物中高温超导电性的第一性原理研究 [D]. 济南: 山东师范大学, 2023: 36–44.

    LIU R. First principles study of high-temperature superconductivity in two-dimensional Li-intercalated boron-carbon compounds [D]. Ji’nan: Shandong Normal University, 2023: 36–44.
    [50] HAI Y L, TIAN H L, JIANG M J, et al. Improving Tc in sodalite-like boron-nitrogen compound M2(BN)6 [J]. Materials Today Physics, 2022, 25: 100699. doi: 10.1016/j.mtphys.2022.100699
    [51] DING H B, FENG Y J, JIANG M J, et al. Ambient-pressure high- Tc superconductivity in doped boron-nitrogen clathrates La(BN)5 and Y(BN)5 [J]. Physical Review B, 2022, 106(10): 104508. doi: 10.1103/PhysRevB.106.104508
  • 加载中
图(7) / 表(2)
计量
  • 文章访问数:  176
  • HTML全文浏览量:  40
  • PDF下载量:  37
出版历程
  • 收稿日期:  2023-10-24
  • 修回日期:  2024-01-13
  • 录用日期:  2024-02-04
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回