Cook-Off Characteristics of HMX-Based Pressed Charges with Different Sizes
-
摘要: 为了研究装药尺寸对压装装药烤燃特性的影响,针对HMX基压装装药,建立了压装装药烤燃过程的计算模型,利用Fluent软件对不同装药尺寸的烤燃样弹进行了数值模拟,计算了不同升温速率下装药尺寸对压装装药点火位置、响应温度和响应时间的影响规律。结果表明:在同一升温速率下,HMX基压装炸药装药长径比为1.0时,装药中心响应温度均为最高;装药长径比大于1.0时,装药中心点火温度均随长径比的增加而降低;当长径比增大到一定程度时,装药中心的响应温度趋于恒值。装药的点火位置由升温速率和装药尺寸共同决定,且装药端面与曲面的传热量之比与长径比的平方成反比。当升温缓慢或长径比较小时,装药的点火位置位于装药中心;当升温速率较高且长径比较大时,装药的点火位置逐渐远离装药中心。Abstract: In order to study the effect of charge size on the cook-off characteristics of pressed charges, the calculation model of cook-off process was established for HMX-based pressed charges. The cook-off bombs with different charge sizes were simulated by Fluent software, the effect of charge size on the ignition position, response temperature and response time of pressed charges at different heating rates was calculated. It was found that, at the same heating rate, the response temperature of the charge center is the highest when the length-diameter ratio of HMX-based pressed explosive is 1.0, and the ignition temperature of the charge center decreases with the increase of the length-diameter ratio when the length-diameter ratio is greater than 1.0. When the length-diameter ratio increases to a certain extent, the response temperature of the charge center tends to be a constant. The ignition position of the charge is determined by both the heating rate and the size of the charge, and the ratio of heat transfer between the end face and the periphery face of the charge is inversely proportional to the square of the length-diameter ratio. When the heating rate is slow or the length-diameter ratio is small, the ignition position of the charge is located at the charge center; when the heating rate is fast and the length-diameter ratio is large, the ignition position of the charge is gradually away from the charge center.
-
Key words:
- HMX-based explosive /
- pressed charge /
- cook-off test /
- charge size
-
表 1 HMX基压装装药及壳体材料参数
Table 1. Material parameters of HMX-based pressed charge and shell
Material ρ/(kg·m−3) λ/(J·m−1·K−1) C/(J·kg−1·K−1) 30CrMnSi 7 850 10.1 550 HMX-based pressed charge 1 860 0.437 1 050 HMX 1 960 0.535 8 1 004.26 Binder (Kel-F) 2 020 1 000.4 0.052 7 Air 1.25 381 0.023 表 2 铝粉的修正物性参数
Table 2. Modified physical parameters of aluminum powder
a λ/(J·m−1·K−1) C/(J·kg−1·K−1) ρ/(kg·m−3) l/m 2.3×10−16 1.39 871 2719 5×10−6 表 3 HMX压装装药热分解反应动力学参数
Table 3. Kinetic parameters of the thermal decomposition reaction of HMX explosive
Material i E/(MJ·mol−1) Z/s−1 Q/(MJ·kg−1) HMX-based pressed charge 1.60 2.0×1018 0.20 HMX 1 0.22 1.4×1021 0.42 2 0.18 1.9×1016 1.30 3 0.14 1.6×1012 5.00 表 4 不同测点位置的响应温度及点火时间
Table 4. Response temperature and ignition time of different gauges
Method t/s δ/% Measuring point A Measuring point B Measuring point C T/℃ δ/% T/℃ δ/% T/℃ δ/% Test 13 090 221.7 224.5 184.5 Frank-Kamenetskii model 13 640 4.2 214.4 3.3 230.1 2.5 188.7 2.3 McGuire-Tarver model 12 895 1.5 217.0 2.1 226.8 1.4 182.3 1.2 表 5 HMX基压装装药测点D的响应温度计算结果
Table 5. Calculated response temperature of measuring point D of HMX-based pressed charges
r/(℃·min–1) Calculated response temperature of measuring point D/℃ L/D=0.5 L/D=1.0 L/D=2.0 L/D=3.0 L/D=4.0 L/D=5.0 L/D=6.0 0.1 245.4 248.2 246.2 248.6 243.4 245.6 246.3 0.5 245.0 245.6 240.2 237.4 234.9 230.0 230.2 0.7 236.4 240.5 236.8 231.6 231.0 229.9 229.9 1.0 232.6 239.7 236.3 231.2 226.5 225.2 225.1 2.0 227.2 229.6 212.2 207.4 206.0 205.8 205.7 表 6 HMX基压装装药测点E的响应温度计算结果
Table 6. Calculated response temperature of measuring point E of HMX-based pressed charges
r/(℃·min–1) Calculated response temperature of measuring point E/℃ L/D=0.5 L/D=1.0 L/D=2.0 L/D=3.0 L/D=4.0 L/D=5.0 L/D=6.0 0.1 220.6 211.7 206.5 205.4 204.0 207.6 212.7 0.5 221.4 213.3 208.2 212.1 216.0 224.4 226.1 0.7 220.3 220.1 210.9 217.0 223.3 226.0 226.6 1.0 217.0 219.6 220.4 228.1 231.5 228.9 228.2 2.0 215.2 219.0 226.8 225.6 212.4 210.8 207.0 表 7 不同装药尺寸样弹的烤燃响应时间计算结果
Table 7. Calculated cook-off response time of test bombs with different charge sizes
r/(℃·min–1) Calculated cook-off response time/s L/D=0.5 L/D=1.0 L/D=2.0 L/D=3.0 L/D=4.0 L/D=5.0 L/D=6.0 0.1 48 140 44 150 41 335 41 020 40 930 40 905 40 895 0.5 14 140 13 425 12 950 12 905 12 895 12 895 12 895 0.7 11 695 11 210 10 895 10 865 10 860 10 860 10 860 1.0 9 485 9 370 9 325 9 315 9 315 9 315 9 315 2.0 7 545 7 520 7 505 7 500 7 500 7 500 7 500 -
[1] 王晓峰. 关于不敏感弹药的几点认识 [J]. 火炸药学报, 2022, 45(3): 285–289.WANG X F. Some opinions about insensitive munitions [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 285–289. [2] LI Y B, PAN L P, YANG Z J, et al. The effect of wax coating, aluminum and ammonium perchlorate on impact sensitivity of HMX [J]. Defence Technology, 2017, 13(6): 422–427. doi: 10.1016/j.dt.2017.05.022 [3] MIL-STD-2105D. Hazard assessment tests for non-unclear munitions [S]. 2011. [4] HOBBS M L, KANESHIGE M J. Small-scale cook-off experiments and models of ammonium nitrate [J]. Journal of Energetic Materials, 2019, 37(1): 29–43. doi: 10.1080/07370652.2018.1521480 [5] 吴世永, 王伟力, 苗润, 等. 不同尺寸装药烤燃特性的数值模拟研究 [J]. 中国测试, 2016, 42(10): 85–89.WU S Y, WANG W L, MIAO R, et al. Numerical simulation of cook-off behavior of charge with different size [J]. China Measurement & Test, 2016, 42(10): 85–89. [6] 冯晓军, 王晓峰, 韩助龙. 炸药装药尺寸对慢速烤燃响应的研究 [J]. 爆炸与冲击, 2005, 25(3): 285–288.FENG X J, WANG X F, HAN Z L. The study of charging size influence on the response of explosives in slow cook-off test [J]. Explosion and Shock Waves, 2005, 25(3): 285–288. [7] WARDELL J F, MAIENSCHEIN J L. The scaled thermal explosion experiment [C]//Proceedings of 12th International Detonation Symposium. San Diego, CA: Office of Naval Research, 2002. [8] 牛余雷, 冯晓军, 郭昕, 等. GHL01炸药烤燃实验的尺寸效应与数值计算 [J]. 火炸药学报, 2014, 37(5): 37–41.NIU Y L, FENG X J, GUO X, et al. Size effect and numerical simulation of cook-off test for GHL01 explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(5): 37–41. [9] 赵亮, 智小琦, 高峰, 等. DNAN基熔铸混合炸药慢烤燃的尺寸效应 [J]. 火炸药学报, 2018, 41(2): 159–164.ZHAO L, ZHI X Q, GAO F, et al. Study on the size effect of cook-off of DNAN based melting and casting mixed explosive [J]. Chinese Journal of Explosives & Propellants, 2018, 41(2): 159–164. [10] 吴浩, 段卓平, 白孟璟, 等. DNAN基含铝炸药烤燃实验与数值模拟 [J]. 含能材料, 2021, 29(5): 414–421.WU H, DUAN Z P, BAI M J, et al. Small-scale cook-off experiments and simulations of DNAN-based aluminized explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(5): 414–421. [11] 胡海波, 傅华, 李涛, 等. 压装密实炸药装药非冲击点火反应传播与烈度演化实验研究进展 [J]. 爆炸与冲击, 2020, 40(1): 011401.HU H B, FU H, LI T, et al. Progress in experimental studies on the evolution behaviors of non-shock initiation reaction in low porosity pressed explosive with confinement [J]. Explosion and Shock Waves, 2020, 40(1): 011401. [12] 蒋超, 闻泉, 王雨时, 等. 不敏感弹药烤燃试验技术综述 [J]. 探测与控制学报, 2019, 41(2): 1–9.JIANG C, WEN Q, WANG Y S, et al. An overview on cook-off test technology for insensitive munitions [J]. Journal of Detection & Control, 2019, 41(2): 1–9. [13] 章冠人, 陈大年. 凝聚炸药起爆动力学 [M]. 北京: 国防工业出版社, 1989. [14] MCGUIRE R R, TARVER C M. Chemical-decomposition models for the thermal explosion of confined HMX, TATB, RDX, and TNT explosives [C]//Proceedings of the 7th Symposium (International) on Detonation. Annapolis: Naval Surface Weapons Center, 1981: 56–64. [15] 刘润泽, 王昕捷, 刘瑞峰, 等. HMX基含AP浇注炸药烤燃实验与数值模拟 [J]. 高压物理学报, 2022, 36(5): 055202.LIU R Z, WANG X J, LIU R F, et al. Cook-off test and numerical simulation of HMX-based cast explosive containing AP [J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 055202. [16] TARVER C M, KOERNER J G. Effects of endothermic binders on times to explosion of HMX- and TATB-based plastic bonded explosives [J]. Journal of Energetic Materials, 2007, 26(1): 1–28. doi: 10.1080/07370650701719170 [17] 刘瑞鹏, 贾宪振, 郭洪卫, 等. FOX-7/HMX混合炸药烤燃试验的数值计算 [J]. 科学技术与工程, 2021, 21(9): 3606–3611.LIU R P, JIA X Z, GUO H W, et al. Simulation calculation of cook-off test on composite explosives of FOX-7/HMX [J]. Science Technology and Engineering, 2021, 21(9): 3606–3611.