高压下Y-Si-H体系晶体结构和超导性质的第一性原理研究

马浩 陈玲 蒋其雯 安德成 段德芳

马浩, 陈玲, 蒋其雯, 安德成, 段德芳. 高压下Y-Si-H体系晶体结构和超导性质的第一性原理研究[J]. 高压物理学报, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
引用本文: 马浩, 陈玲, 蒋其雯, 安德成, 段德芳. 高压下Y-Si-H体系晶体结构和超导性质的第一性原理研究[J]. 高压物理学报, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791
Citation: MA Hao, CHEN Ling, JIANG Qiwen, AN Decheng, DUAN Defang. Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020106. doi: 10.11858/gywlxb.20230791

高压下Y-Si-H体系晶体结构和超导性质的第一性原理研究

doi: 10.11858/gywlxb.20230791
基金项目: 国家重点研发计划(2022YFA1402304);国家自然科学基金(12122405, 122741695);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    马 浩(1999-),男,硕士研究生,主要从事高压下氢基高温超导材料结构与性质研究. E-mail:haoma21@mails.jlu.edu.cn

    通讯作者:

    段德芳(1982-),女,博士,教授,主要从事高压下凝聚态物质结构与性质研究. E-mail:duandf@jlu.edu.cn

  • 中图分类号: O521.2

Ab Initio Calculation Principles Study of Crystal Structure and Superconducting Properties of Y-Si-H System under High Pressure

  • 摘要: 采用第一性原理计算方法,研究了三元氢化物Y-Si-H体系在高压下的晶体结构、电子性质及超导性质,发现了热力学稳定的YSiH7、YSiH9、YSi2H12和YSiH18,以及热力学亚稳的YSi2H13、YSi2H14和Y2SiH17。电子性质计算表明,YSiH7为绝缘体,YSi2H13为半导体,其余氢化物均具有金属特性。通过麦克米兰方程估算超导转变温度(Tc)发现,YSi2H12具有最高的Tc,在100 GPa下为43.5 K。YSi2H14的动力学稳定压力可降至40 GPa,Tc为23.8 K,是Y-Si二元化合物中最高Tc的2倍,说明在Y-Si体系中引入H原子可以有效地提高超导转变温度。Y2SiH17在100 GPa下的Tc为35.8 K。谱函数和电声耦合计算结果表明,在YSi2H14和Y2SiH17中除中频振动的H原子诱导超导外,低频振动的Y原子也起着重要作用。

     

  • 图  Y-Si-H体系在150 GPa压力下的热力学凸包图(红色实心点表示落在凸包上的热力学稳定的化合物,蓝色空心点表示偏离凸包15 meV/atom以内的亚稳化合物)

    Figure  1.  Thermodynamic convex hull diagram of Y-Si-H system under pressure of 150 GPa (The red solid points are represented as thermodynamically stable structures on the convex hull, and the blue hollow points are represented as metastable structures deviating from the convex hull within 15 meV/atom.)

    图  预测的热力学稳定或亚稳的三元Y-Si-H化合物的晶体结构

    Figure  2.  Predicted crystal structure of thermodynamically stable or metastable ternary Y-Si-H compounds

    图  计算的YSiH7、YSiH9、YSi2H12和YSiH18形成焓随压力的变化关系

    Figure  3.  Calculated formation enthalpies of YSiH7, YSiH9, YSi2H12 and YSiH18 as a function of pressure

    图  计算的YSi2H13、YSi2H14和Y2SiH17的形成焓随压力的变化

    Figure  4.  Calculated formation enthalpies of YSi2H13, YSi2H14 and Y2SiH17 as a function of pressure

    图  YSiH9、YSi2H12、YSi2H14、Y2SiH17在150 GPa压力下的能带结构和分波态密度

    Figure  5.  Band structure and discrete electron state density of (a) YSiH9, (b) YSi2H12, (c) YSi2H14, (d) Y2SiH17 under pressure of 150 GPa

    图  YSiH18、YSiH7、YSi2H13在150 GPa压力下的能带结构和分波态密度

    Figure  6.  Band structure and discrete electron state density of YSiH18, YSiH7, YSi2H13 under pressure of 150 GPa

    图  YSiH9、YSi2H12、YSi2H14、Y2SiH17分别在150、150、40和100 GPa下的声子谱、声子态密度、谱函数$ {\alpha }^{2}F(\omega) $和电声耦合常数$ \lambda $

    Figure  7.  Phonon spectra, phonon state density, spectral function $ {\alpha }^{2}F(\omega) $, electroacoustic coupling and $ \lambda $ at 150, 150, 40 and 100 GPa of (a) YSiH9, (b) YSi2H12, (c) YSi2H14, (d) Y2SiH17, respectively

    表  1  Y-Si-H体系各结构在不同压力下的H原子的s轨道和Y原子的d轨道在费米面处的态密度($ {\mathit{N}}_{\rm{Ef}} $)、平均声子频率的对数($ {\mathit{\omega }}_{\rm{log}} $)、电声耦合参数($ \mathit{\lambda } $)和超导转温度($T_{\mathrm{c}} $

    Table  1.   Density of state ($ {\mathit{N}}_{\rm{Ef}} $) of the s orbital H and the d orbital Y at the Fermi surface, logarithm of average phonon frequency $ {\mathit{\omega }}_{\rm{log}} $, electroacoustic coupling parameter $ \mathit{\lambda } $, and superconducting transition temperature $T_{\mathrm{c}} $for each structure of Y-Si-H system under different pressures

    Compound Phase Pressure/GPa NEf /(states∙eV−1) $ {\mathit{\omega }}_{{\mathrm{{l}{o}{g}}}} $/K $ \mathit{\lambda } $ Tc/K
    s orbital of H d orbital of Y
    YSiH9 P21/m 150 0.15 0.50 951 0.60 15.3
    YSiH18 P312 150 0.11 0.11 605 0.43 1.9
    YSi2H12 C2/m 150 0.28 0.06 1117 0.68 28.4
    YSi2H12 C2/m 100 0.32 0.07 954 0.87 43.5
    YSi2H14 C2/m 150 0.10 0.31 842 0.55 9.7
    YSi2H14 C2/m 100 0.09 0.33 776 0.58 11.5
    YSi2H14 C2/m 40 0.10 0.44 419 0.97 23.8
    Y2SiH17 P$\overline{\mathrm{4}} $m2 150 0.13 0.28 873 0.78 31.6
    Y2SiH17 P$\overline{\mathrm{4}} $m2 100 0.13 0.30 694 0.92 35.8
    下载: 导出CSV
  • [1] COOPER L N. Microscopic quantum interference in the theory of superconductivity [J]. Science, 1973, 181(4103): 908–916. doi: 10.1126/science.181.4103.908
    [2] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [3] DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [4] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [5] 赵文迪, 段德芳, 崔田. 高压下氢基高温超导体研究的新进展 [J]. 高压物理学报, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727

    ZHAO W D, DUAN D F, CUI T. New developments of hydrogen-based high-temperature superconductors under high pressure [J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
    [6] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
    [7] DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide [J]. Physical Review B, 2015, 91(18): 180502. doi: 10.1103/PhysRevB.91.180502
    [8] BERNSTEIN N, HELLBERG C S, JOHANNES M D, et al. What superconducts in sulfur hydrides under pressure and why [J]. Physical Review B, 2015, 91(6): 060511. doi: 10.1103/PhysRevB.91.060511
    [9] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [10] EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
    [11] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995.
    [12] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [13] WANG C Z, YI S, CHO J H. Pressure dependence of the superconducting transition temperature of compressed LaH10 [J]. Physical Review B, 2019, 100(6): 060502. doi: 10.1103/PhysRevB.100.060502
    [14] HONG F, YANG L X, SHAN P F, et al. Superconductivity of lanthanum superhydride investigated using the standard four-probe configuration under high pressures [J]. Chinese Physics Letters, 2020, 37(10): 107401. doi: 10.1088/0256-307X/37/10/107401
    [15] KRUGLOV I A, SEMENOK D V, SONG H, et al. Superconductivity of LaH10 and LaH16 polyhydrides [J]. Physical Review B, 2020, 101(2): 024508. doi: 10.1103/PhysRevB.101.024508
    [16] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [17] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [18] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [19] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [20] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
    [21] XIE H, YAO YS, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
    [22] WANG H, YAO Y S, PENG F, et al. Quantum and classical proton diffusion in superconducting clathrate hydrides [J]. Physical Review Letters, 2021, 126(11): 117002. doi: 10.1103/PhysRevLett.126.117002
    [23] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters 2019, 123(9): 097001.
    [24] ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
    [25] SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
    [26] GAO M, YAN X W, LU Z Y, et al. Phonon-mediated high-temperature superconductivity in the ternary borohydride KB2H8 under pressure near 12 GPa [J]. Physical Review B, 2021, 104(10): L100504. doi: 10.1103/PhysRevB.104.L100504
    [27] BI J K, NAKAMOTO Y, ZHANG P Y, et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La, Ce)H9 [J]. Nature Communications, 2022, 13(1): 5952. doi: 10.1038/s41467-022-33743-6
    [28] CHEN S, QIAN Y C, HUANG X L, et al. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride [J]. National Science Review, 2024, 11(1): nwad107.
    [29] ZHANG J R, CHEN G, LIU H Y. Stable structures and superconductivity in a Y-Si system under high pressure [J]. The Journal of Physical Chemistry Letters, 2021, 12(42): 10388–10393. doi: 10.1021/acs.jpclett.1c02853
    [30] PICKARD C J, NEEDS R J. Ab initio random structure searching [J]. Journal of Physics: Condensed Matter, 2011, 23(5): 053201.
    [31] PICKARD C J, NEEDS R J. High-pressure phases of silane [J]. Physical Review Letters, 2006, 97(4): 045504. doi: 10.1103/PhysRevLett.97.045504
    [32] CLARK S J, SEGALL M D, PICKARD C J, et al. First principles methods using CASTEP [J]. Zeitschrift für Kristallographie−Crystalline Materials, 2005, 220(5/6): 567–570.
    [33] KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115. doi: 10.1103/PhysRevB.48.13115
    [34] KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
    [35] KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [36] GAO H, WANG J J, HAN Y, et al. Enhancing crystal structure prediction by decomposition and evolution schemes based on graph theory [J]. Fundamental Research, 2021, 1(4): 466–471. doi: 10.1016/j.fmre.2021.06.005
    [37] XIA K, GAO H, LIU C, et al. A novel superhard tungsten nitride predicted by machine-learning accelerated crystal structure search [J]. Science Bulletin, 2018, 63(13): 817–824. doi: 10.1016/j.scib.2018.05.027
    [38] VANDERBILT D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism [J]. Physical Review B, 1990, 41(11): 7892–7895. doi: 10.1103/PhysRevB.41.7892
    [39] BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
    [40] GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [41] VIKRAM, SAHNI B, BARMAN C K, et al. Reply to “comment on ‘accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials’” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2245–2246. doi: 10.1021/acs.jpcc.9b12014
    [42] XIAO H, DAN Y, SUO B B, et al. Comment on “accelerated discovery of new 8-electron half-heusler compounds as promising energy and topological quantum materials” [J]. The Journal of Physical Chemistry C, 2020, 124(3): 2247–2249. doi: 10.1021/acs.jpcc.9b10295
    [43] CHEN M W, YING P, LIU C. Research progress of high hardness B-C-O compounds [J]. International Journal of Refractory Metals and Hard Materials, 2023, 111: 106086. doi: 10.1016/j.ijrmhm.2022.106086
    [44] LIU C, LIU L Y, YING P. Stability, deformation, physical properties of novel hard B2CO phases [J]. Journal of Materials Science, 2022, 57(20): 9231–9245. doi: 10.1007/s10853-022-07242-4
    [45] QUAN Y D, LEE K W, PICKETT W E. MoB2 under pressure: superconducting Mo enhanced by boron [J]. Physical Review B, 2021, 104(22): 224504. doi: 10.1103/PhysRevB.104.224504
    [46] PEI C Y, ZHANG J F, WANG Q, et al. Pressure-induced superconductivity at 32 K in MoB2 [J]. National Science Review, 2023, 10(5): nwad034. doi: 10.1093/nsr/nwad034
    [47] ALLEN P B, DYNES R. Transition temperature of strong-coupled superconductors reanalyzed [J]. Physical Review B, 1975, 12(3): 905. doi: 10.1103/PhysRevB.12.905
    [48] 刘超, 应盼. 压力和碳含量调控BCxO化合物物理性质的机理研究 [J]. 高压物理学报, 2021, 35(6): 061101.

    LIU C, YING P. Mechanism of pressure and carbon content regulating physical properties of BCxO compounds [J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101.
    [49] MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  222
  • HTML全文浏览量:  42
  • PDF下载量:  45
出版历程
  • 收稿日期:  2023-11-10
  • 修回日期:  2023-12-17
  • 录用日期:  2023-12-18
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回