H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性

叶青 王维建 贾真真 刘佳林

叶青, 王维建, 贾真真, 刘佳林. H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性[J]. 高压物理学报, 2024, 38(2): 025201. doi: 10.11858/gywlxb.20230760
引用本文: 叶青, 王维建, 贾真真, 刘佳林. H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性[J]. 高压物理学报, 2024, 38(2): 025201. doi: 10.11858/gywlxb.20230760
YE Qing, WANG Weijian, JIA Zhenzhen, LIU Jialin. Propagation Characteristics of Dual Explosive Sources Gas Explosion in Different Arrangements in H-Type Tunnel[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025201. doi: 10.11858/gywlxb.20230760
Citation: YE Qing, WANG Weijian, JIA Zhenzhen, LIU Jialin. Propagation Characteristics of Dual Explosive Sources Gas Explosion in Different Arrangements in H-Type Tunnel[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025201. doi: 10.11858/gywlxb.20230760

H型巷道内采用不同布置方式的双爆源瓦斯爆炸传播特性

doi: 10.11858/gywlxb.20230760
基金项目: 国家自然科学基金(52174177,52174178)
详细信息
    作者简介:

    叶 青(1976-),男,博士,教授,博士生导师,主要从事煤矿瓦斯灾害防治、工业爆炸与防治、安全评价与管理研究. E-mail:cumtyeqing@126.com

    通讯作者:

    王维建(1983-),男,博士,讲师,主要从事煤矿瓦斯灾害防治与工业安全评价研究. E-mail:46774591@qq.com

  • 中图分类号: O382.1; X936

Propagation Characteristics of Dual Explosive Sources Gas Explosion in Different Arrangements in H-Type Tunnel

  • 摘要: 为探究复杂巷道内多爆源瓦斯爆炸传播特性及热冲击动力学机制,运用计算流体力学软件Fluent,以H型巷道为模型,在巷道内设置同侧、相对、对角3种双爆源布置方式。研究发现:巷道内的2处爆源同时起爆后,前驱冲击波沿巷道未燃区传播,当两股冲击波相遇时,压力叠加,冲量抵消,在压力叠加区火焰传播受阻,导致火焰传播速度放缓甚至反向;相较于单爆源爆炸,双爆源工况中导致巷道内特定区域如联络巷、岔口中心及其边壁的压力更高;同侧和对角布置工况下的压力极值区出现在巷道封闭端,相对布置工况下的压力极值区出现在分岔口中心处。

     

  • 图  巷道模型及尺寸

    Figure  1.  Tunnel model and dimensions

    图  网格划分

    Figure  2.  Grid division

    图  巷道内双爆源的布置方式

    Figure  3.  Different arrangements of double explosive sources in the tunnel

    图  压力峰值数据采集点

    Figure  4.  Pressure peak collection points

    图  模拟与实验得到的监测点压力峰值曲线对比

    Figure  5.  Comparison of peak pressure curves of monitoring points between simulation and experiments

    图  双爆源同侧布置工况下冲击波传播速度云图

    Figure  6.  Shock wave propagation velocity nephogram for dual explosion sources with the same-side arrangement

    图  同侧布置工况下监测点的设置

    Figure  7.  Setting of monitoring points under the same-side arrangement

    图  同侧布置工况下监测点的压力-时间曲线

    Figure  8.  Pressure-time curves of monitoring points under the same-side arrangement

    图  双爆源相对布置工况下冲击波传播速度云图

    Figure  9.  Shock wave propagation velocity nephogram for dual explosion sources with the opposite arrangement

    图  10  相对布置工况下监测点的设置

    Figure  10.  Setting of monitoring points under the opposite arrangement

    图  11  相对布置工况下监测点的压力-时间曲线

    Figure  11.  Pressure-time curves of monitoring points under the opposite arrangement

    图  12  双爆源对角布置工况下冲击波传播速度云图

    Figure  12.  Shock wave propagation velocity nephogram for dual explosion sources with the diagonal arrangement

    图  13  对角布置工况下监测点的设置

    Figure  13.  Setting of monitoring points under the diagonal arrangement

    图  14  对角布置工况下监测点的压力-时间曲线

    Figure  14.  Pressure-time curves of monitoring points under the diagonal arrangement

    图  15  双爆源不同布置工况下压力极值分布区域云图

    Figure  15.  Peak pressure cloud diagram for dual explosion sources with different arrangements

    图  16  不同双爆源布置工况下的火焰云图

    Figure  16.  Flame nephogram for dual explosion sources with different arrangements

    表  1  边界条件设置

    Table  1.   Boundary condition setting

    p0/kPa Rz/m T0/K $\varphi_{{\mathrm{CH}}_4}$/% $\varphi_{{\mathrm{O}}_2}$/% EI/J tI/ms ttot/ms
    101.325 0 298 9.5 21.0 0.1 1 400
    下载: 导出CSV

    表  2  不同工况下巷道区域的峰值压力

    Table  2.   Peak pressure of tunnel under different cases

    PositionPeak pressure for dual explosion sources/MPaPeak pressure for single
    explosive source/MPa
    Same-sideOppositeDiagonal
    Starting end0.820.820.82
    Centre of contact lane0.800.720.25
    Opposite end1.661.271.661.54
    Bifurcation1.450.42
    Bifurcation sidewall1.310.77
    下载: 导出CSV
  • [1] 王鹏军, 李晋生, 马晋民. 网格型和“H”型通风系统在高瓦斯矿井中的应用 [J]. 山西煤炭, 2009, 29(4): 45–47. doi: 10.3969/j.issn.1672-5050.2009.04.019

    WANG P J, LI J S, MA J M. The application of grid and H shape ventilation systems in gasy mines [J]. Shanxi Coal, 2009, 29(4): 45–47. doi: 10.3969/j.issn.1672-5050.2009.04.019
    [2] 肖培华, 刘畅峰. H. Y型通风系统在城山煤矿的应用 [J]. 江西煤炭科技, 2009(4): 31, 64.

    XIAO P H, LIU C F. Application of H. Y-type ventilation system in Chengshan colliery [J]. Jiangxi Coal Science and Technology, 2009(4): 31, 64.
    [3] 马恒, 陈晓军, 荆德吉. H 型通风巷道瓦斯爆炸及泄爆过程模拟研究 [J]. 中国安全科学学报, 2021, 31(1): 45–51. doi: 10.16265/j.cnki.issn1003-3033.2021.01.007

    MA H, CHEN X J, JING D J. Simulation study on gas explosion and discharge process in H-type ventilation roadway [J]. China Safety Science Journal, 2021, 31(1): 45–51. doi: 10.16265/j.cnki.issn1003-3033.2021.01.007
    [4] 林柏泉, 叶青, 翟成, 等. 瓦斯爆炸在分岔管道中的传播规律及分析 [J]. 煤炭学报, 2008, 33(2): 136–139. doi: 10.3321/j.issn:0253-9993.2008.02.004

    LIN B Q, YE Q, ZHAI C, et al. Propagation law and analysis of gas explosion in bifurcated pipeline [J]. Journal of China Coal Society, 2008, 33(2): 136–139. doi: 10.3321/j.issn:0253-9993.2008.02.004
    [5] 林柏泉, 张仁贵, 吕恒宏. 瓦斯爆炸过程中火焰传播规律及其加速机理的研究 [J]. 煤炭学报, 1999, 24(1): 56–59. doi: 10.3321/j.issn:0253-9993.1999.01.013

    LIN B Q, ZHANG R G, LYU H H. Research on accelerating mechanism and flame transmission in gas explosion [J]. Journal of China Coal Society, 1999, 24(1): 56–59. doi: 10.3321/j.issn:0253-9993.1999.01.013
    [6] ZHAI C, LIN B Q, YE Q, et al. Influence of geometry shape on gas explosion propagation laws in bend roadways [J]. Procedia Earth and Planetary Science, 2009, 1(1): 193–198. doi: 10.1016/j.proeps.2009.09.032
    [7] YE Q, LIN B Q, JIA Z Z, et al. Propagation law and analysis of gas explosion in bend duct [J]. Procedia Earth and Planetary Science, 2009, 1(1): 316–321. doi: 10.1016/j.proeps.2009.09.050
    [8] ZHU C J, LIN B Q, LU Z G, et al. Experiments on flame and shock wave propagation in a parallel tunnel in underground coal mines [C]//Progress in Safety Science and Technology. Beijing: Science Press, 2010: 1204–1208.
    [9] BARTKNECHT W. 爆炸过程和防护措施[M]. 何宏达, 译. 北京: 化学工业出版社, 1985.

    BARTKNECHT W. Explosion process and the protective measures [M]. Translated by HE H D. Beijing: Chemical Industry Press, 1985.
    [10] SAVINKO C K. 井下空气冲击波[M]. 丁亚伦, 龙维祺, 译. 北京: 冶金工业出版社, 1979.

    SAVINKO C K. Ударные воздущные волны в подземных выработка [M]. Translated by DING Y L, LONG W Q. Beijing: Metallurgical Industry Press, 1979.
    [11] 罗振敏, 邓军, 文虎, 等. 小型管道中瓦斯爆炸火焰传播特性的实验研究 [J]. 中国安全科学学报, 2007, 17(5): 106–109. doi: 10.3969/j.issn.1003-3033.2007.05.019

    LUO Z M, DENG J, WEN H, et al. Experimental study on flame propagation characteristics of gas explosion in small-scale duct [J]. China Safety Science Journal, 2007, 17(5): 106–109. doi: 10.3969/j.issn.1003-3033.2007.05.019
    [12] 徐景德, 徐胜利, 杨庚宇. 矿井瓦斯爆炸传播的试验研究 [J]. 煤炭科学技术, 2004, 32(7): 55–57. doi: 10.13199/j.cst.2004.07.57.xujd.019

    XU J D, XU S L, YANG G Y. Experimental study on mine gas explosion diffusion [J]. Coal Science and Technology, 2004, 32(7): 55–57. doi: 10.13199/j.cst.2004.07.57.xujd.019
    [13] 贾智伟, 刘彦伟, 景国勋. 瓦斯爆炸冲击波在管道拐弯情况下的传播特性 [J]. 煤炭学报, 2011, 36(1): 97–100. doi: 10.13225/j.cnki.jccs.2011.01.030

    JIA Z W, LIU Y W, JING G X. Propagation characteristic about shock wave of gas explosion at laneway corner [J]. Journal of China Coal Society, 2011, 36(1): 97–100. doi: 10.13225/j.cnki.jccs.2011.01.030
    [14] 江丙友, 林柏泉, 朱传杰, 等. 瓦斯爆炸冲击波在并联巷道中传播特性的数值模拟 [J]. 燃烧科学与技术, 2011, 17(3): 250–254.

    JIANG B Y, LIN B Q, ZHU C J, et al. Numerical simulation on shock wave propagation characteristics of gas explosion in parallel roadway [J]. Journal of Combustion Science and Technology, 2011, 17(3): 250–254.
    [15] 朱传杰, 林柏泉, 江丙友, 等. 瓦斯爆炸在封闭管道内冲击振荡特征的数值模拟 [J]. 振动与冲击, 2012, 31(16): 8–12, 17. doi: 10.3969/j.issn.1000-3835.2012.16.002

    ZHU C J, LIN B Q, JIANG B Y, et al. Numerical simulation on oscillation and shock of gas explosion in a closed end pipe [J]. Journal of Vibration and Shock, 2012, 31(16): 8–12, 17. doi: 10.3969/j.issn.1000-3835.2012.16.002
    [16] 解北京, 杜玉晶, 王亮. 分岔管道内瓦斯爆炸火焰传播规律实验及数值模拟 [J]. 重庆大学学报, 2019, 42(6): 69–77. doi: 10.11835/j.issn.1000-582X.2019.06.008

    XIE B J, DU Y J, WANG L. Experimental and numerical simulation of gas propagation law of gas explosion flame in bifurcation pipeline [J]. Journal of Chongqing University, 2019, 42(6): 69–77. doi: 10.11835/j.issn.1000-582X.2019.06.008
    [17] 耿进军, 许胜铭, 景国勋, 等. 非燃烧区瓦斯爆炸冲击波在单向分岔管道内传播规律的试验研究 [J]. 安全与环境学报, 2015, 15(5): 108–111. doi: 10.13637/j.issn.1009-6094.2015.05.023

    GENG J J, XU S M, JING G X, et al. Propagating regularity of the gas explosion shock waves at unidirectional bifurcation of pipeline in the non-combustion zone [J]. Journal of Safety and Environment, 2015, 15(5): 108–111. doi: 10.13637/j.issn.1009-6094.2015.05.023
    [18] 许胜铭. 复杂管道内瓦斯爆炸冲击波、火焰及有毒气体传播规律研究[D]. 焦作: 河南理工大学, 2015.

    XU S M. Study on propagation law of gas explosion shock wave, flame and poisonous gas in complex pipeline [D]. Jiaozuo: Henan Polytechnic University, 2015.
    [19] 高建良, 吴泽琳, 王文祺, 等. 瓦斯爆炸冲击波在角、并联巷道内传播规律对比研究 [J]. 安全与环境学报, 2021, 21(6): 2494–2499. doi: 10.13637/j.issn.1009-6094.2020.1012

    GAO J L, WU Z L, WANG W Q, et al. Comparative study on the propagation law of gas explosion shock wave in the diagonal and parallel roadway [J]. Journal of Safety and Environment, 2021, 21(6): 2494–2499. doi: 10.13637/j.issn.1009-6094.2020.1012
    [20] 罗振敏, 吴刚. 密闭空间瓦斯爆炸数值模拟研究 [J]. 煤矿安全, 2020, 51(2): 1–4. doi: 10.13347/j.cnki.mkaq.2020.02.002

    LUO Z M, WU G. Numerical simulation of gas explosion in confined space [J]. Safety in Coal Mines, 2020, 51(2): 1–4. doi: 10.13347/j.cnki.mkaq.2020.02.002
    [21] 田诗雅, 刘剑, 高科. 密闭管道瓦斯爆炸冲击波冲量及压力上升速率的实验研究 [J]. 中国安全生产科学技术, 2015, 11(8): 16–21. doi: 10.11731/j.issn.1673-193x.2015.08.003

    TIAN S Y, LIU J, GAO K. Experimental study on shock wave impulse and pressure rise rate of gas explosion in airtight pipeline [J]. Journal of Safety Science and Technology, 2015, 11(8): 16–21. doi: 10.11731/j.issn.1673-193x.2015.08.003
    [22] 叶青, 林柏泉. 受限空间瓦斯爆炸传播特性 [M]. 徐州: 中国矿业大学出版社, 2012.

    YE Q, LIN B Q. Propagation characteristics of gas explosions in confined spaces [M]. Xuzhou: China University of Mining and Technology Press, 2012.
    [23] 赵丹, 齐昊, 潘竞涛, 等. 不同类型管道内瓦斯爆炸冲击波传播试验研究 [J]. 中国安全科学学报, 2018, 28(3): 79–83. doi: 10.16265/j.cnki.issn1003-3033.2018.03.014

    ZHAO D, QI H, PAN J T, et al. Experimental study on gas explosion shock wave propagation in different types of pipelines [J]. Chinese Safety Science Journal, 2018, 28(3): 79–83. doi: 10.16265/j.cnki.issn1003-3033.2018.03.014
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  35
  • PDF下载量:  20
出版历程
  • 收稿日期:  2023-10-17
  • 修回日期:  2023-12-10
  • 网络出版日期:  2024-03-20
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回