圆柱形锂电池在局部压痕下的安全性实验研究

李杰 张云龙 袁博兴 汤元会 何永全

李杰, 张云龙, 袁博兴, 汤元会, 何永全. 圆柱形锂电池在局部压痕下的安全性实验研究[J]. 高压物理学报, 2024, 38(2): 025301. doi: 10.11858/gywlxb.20230754
引用本文: 李杰, 张云龙, 袁博兴, 汤元会, 何永全. 圆柱形锂电池在局部压痕下的安全性实验研究[J]. 高压物理学报, 2024, 38(2): 025301. doi: 10.11858/gywlxb.20230754
LI Jie, ZHANG Yunlong, YUAN Boxing, TANG Yuanhui, HE Yongquan. Experimental Study on the Safety Performance of Cylindrical Lithium-Ion Batteries under Local Indentation[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025301. doi: 10.11858/gywlxb.20230754
Citation: LI Jie, ZHANG Yunlong, YUAN Boxing, TANG Yuanhui, HE Yongquan. Experimental Study on the Safety Performance of Cylindrical Lithium-Ion Batteries under Local Indentation[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 025301. doi: 10.11858/gywlxb.20230754

圆柱形锂电池在局部压痕下的安全性实验研究

doi: 10.11858/gywlxb.20230754
基金项目: 国家市场监督管理总局科技计划项目(2021MK104);陕西省重点研发计划项目(2022GY-178)
详细信息
    作者简介:

    李 杰(1984-),男,博士,副教授,主要从事新能源与交通融合,人工智能应用研究. E-mail: jli@chd.edu.cn

    通讯作者:

    李 杰(1984-),男,博士,副教授,主要从事新能源与交通融合、人工智能应用研究. E-mail:jli@chd.edu.cn

  • 中图分类号: O348.3; TM912.9

Experimental Study on the Safety Performance of Cylindrical Lithium-Ion Batteries under Local Indentation

  • 摘要: 锂电池局部挤压是汽车碰撞引发的主要损伤形式。为了明确锂电池在受到局部挤压时的安全性能,利用自研的机械滥用实验平台,对18650锂电池进行局部压痕实验,以渐进压缩的方式分析其失效过程,得到了失效过程及温度演变规律,讨论了电池荷电状态、加载速度、压痕位置和压头尺寸对电池安全的影响。结果表明:锂电池受局部挤压后有明显的热失控规律,失效后不会立即发生热失控,存在一定的反应时间;电池荷电状态与热失控剧烈程度成正相关,加载速度决定了电池的失效时间;靠近电池负极一端受到损伤时更易引发热失控现象,且受损面积较大时温度更高。实验结果可为锂电池包的安全性设计提供有益的建议。

     

  • 图  电池样本

    Figure  1.  Battery specimens

    图  实验平台

    Figure  2.  Experimental platform

    图  锂电池的压痕实验结果

    Figure  3.  Experimental results of lithium battery under indentation

    图  第1组实验测得的热失控过程

    Figure  4.  Thermal runaway process of Exp. 1

    图  电池压痕滥用热成像图

    Figure  5.  Thermograph of the battery under local indentation

    图  不同SOC下电池的力-电-热响应

    Figure  6.  Force-electric-thermal responses of the battery with different SOCs

    图  不同加载速度下电池的力-电-热响应

    Figure  7.  Force-electric-thermal responses of the battery under different loading velocities

    图  压痕位置示意图

    Figure  8.  Schematic diagram of the indentation location

    图  不同压痕位置工况下锂电池的力-电-热响应

    Figure  9.  Force-electric-thermal responses of the battery under different indentation locations

    图  10  不同压痕位置工况下不同SOC的锂电池的热成像

    Figure  10.  Thermal images of lithium battery with different SOCs under different indentation positions

    图  11  第5组实验测得的力-电-热响应

    Figure  11.  Force-electric-thermal responses of Exp. 5

    图  12  不同压头半径和SOC下锂电池的力-电响应特征

    Figure  12.  Force-electric response characteristics of batteries with different SOCs under different indenter radii conditions

    图  13  不同压头半径和SOC下锂电池的温度特征

    Figure  13.  Temperature characteristics of lithium batteries with different SOCs under different indenter radii conditions

    表  1  电池单体参数

    Table  1.   Battery parameters

    Height/
    mm
    Diameter/
    mm
    Nominal capacity/
    (W·h)
    Nominal
    voltage/V
    End-of-charge
    voltage/V
    End-of-discharge
    voltage/V
    65 18 4.6 3.7 4.2 2.75
    下载: 导出CSV

    表  2  实验条件与参数信息

    Table  2.   Information on experimental conditions and parameters

    Exp.SOC/%Indenter velocity/
    (mm·min−1)
    Displacement/
    mm
    Indentation positions/
    mm
    Indenter size/
    mm
    11001013305.0
    220, 40, 601013305.0
    3402, 10, 2013305.0
    420101310, 20, 30, 45, 555.0
    520, 40, 601013305.0, 7.5, 10.0
    下载: 导出CSV
  • [1] LAI X, JIN C Y, YI W, et al. Mechanism, modeling, detection, and prevention of the internal short circuit in lithium-ion batteries: recent advances and perspectives [J]. Energy Storage Materials, 2021, 35: 470–499. doi: 10.1016/j.ensm.2020.11.026
    [2] PARLIKAR A, TRUONG C N, JOSSEN A, et al. The carbon footprint of island grids with lithium-ion battery systems: an analysis based on levelized emissions of energy supply [J]. Renewable and Sustainable Energy Reviews, 2021, 149: 111353. doi: 10.1016/j.rser.2021.111353
    [3] HUANG L W, ZHANG Z S, WANG Z P, et al. Thermal runaway behavior during overcharge for large-format lithium-ion batteries with different packaging patterns [J]. Journal of Energy Storage, 2019, 25: 100811. doi: 10.1016/j.est.2019.100811
    [4] FENG X N, OUYANG M G, LIU X, et al. Thermal runaway mechanism of lithium ion battery for electric vehicles: a review [J]. Energy Storage Materials, 2018, 10: 246–267. doi: 10.1016/j.ensm.2017.05.013
    [5] HUANG W S, FENG X N, HAN X B, et al. Questions and answers relating to lithium-ion battery safety issues [J]. Cell Reports Physical Science, 2021, 2(1): 100285. doi: 10.1016/j.xcrp.2020.100285
    [6] 李红刚, 张超, 曹俊超, 等. 锂离子电池碰撞安全仿真方法的研究进展与展望 [J]. 机械工程学报, 2022, 58(24): 121–144.

    LI H G, ZHANG C, CAO J C, et al. Advances and perspectives on modeling methods for collision safety of lithium-ion batteries [J]. Journal of Mechanical Engineering, 2022, 58(24): 121–144.
    [7] ZHOU D, LI H G, LI Z H, et al. Toward the performance evolution of lithium-ion battery upon impact loading [J]. Electrochimica Acta, 2022, 432: 141192. doi: 10.1016/j.electacta.2022.141192
    [8] LI H G, ZHOU D, CAO J C, et al. On the damage and performance degradation of multifunctional sandwich structure embedded with lithium-ion batteries under impact loading [J]. Journal of Power Sources, 2023, 581: 233509. doi: 10.1016/j.jpowsour.2023.233509
    [9] 郝鑫, 杜建华, 梁浩斌, 等. 锂离子电池冲击挤压后安全特性研究综述 [J]. 消防科学与技术, 2021, 40(7): 963–967. doi: 10.3969/j.issn.1009-0029.2021.07.003

    HAO X, DU J H, LIANG H B, et al. A review of the safety characteristics of lithium-ion batteries after impact extrusion [J]. Fire Science and Technology, 2021, 40(7): 963–967. doi: 10.3969/j.issn.1009-0029.2021.07.003
    [10] 刘首彤, 黄沛丰, 白中浩. 锂离子电池机械滥用失效机理及仿真模型研究进展 [J]. 汽车工程, 2022, 44(4): 465–475.

    LIU S T, HUANG P F, BAI Z H. A review on research progress in failure mechanism and simulation model of li-ion battery related to mechanical abuse [J]. Automotive Engineering, 2022, 44(4): 465–475.
    [11] LIU B H, DUAN X D, YUAN C H, et al. Quantifying and modeling of stress-driven short-circuits in lithium-ion batteries in electrified vehicles [J]. Journal of Materials Chemistry A, 2021, 9(11): 7102–7113. doi: 10.1039/D0TA12082K
    [12] YUAN C H, GAO X, WONG H K, et al. A multiphysics computational framework for cylindrical battery behavior upon mechanical loading based on LS-DYNA [J]. Journal of the Electrochemical Society, 2019, 166(6): A1160. doi: 10.1149/2.1071906jes
    [13] ZHU X Q, WANG H, WANG X, et al. Internal short circuit and failure mechanisms of lithium-ion pouch cells under mechanical indentation abuse conditions: an experimental study [J]. Journal of Power Sources, 2020, 455: 227939. doi: 10.1016/j.jpowsour.2020.227939
    [14] 董思捷, 张新春, 汪玉林, 等. 不同挤压载荷下圆柱形锂离子电池的失效机理试验研究 [J]. 中国机械工程, 2022, 33(8): 915–920. doi: 10.3969/j.issn.1004-132X.2022.08.005

    DONG S J, ZHANG X C, WANG Y L, et al. Experimental study of failure mechanism of cylindrical lithium-ion batteries under different compression loadings [J]. China Mechanical Engineering, 2022, 33(8): 915–920. doi: 10.3969/j.issn.1004-132X.2022.08.005
    [15] VOYIADJIS G Z, AKBARI E, ŁUCZAK B, et al. Towards determining an engineering stress-strain curve and damage of the cylindrical lithium-ion battery using the cylindrical indentation test [J]. Batteries, 2023, 9(4): 233. doi: 10.3390/batteries9040233
    [16] LI H G, ZHOU D, ZHANG M H, et al. Multi-field interpretation of internal short circuit and thermal runaway behavior for lithium-ion batteries under mechanical abuse [J]. Energy, 2023, 263: 126027. doi: 10.1016/j.energy.2022.126027
    [17] LI H G, ZHOU D, DU C L, et al. Parametric study on the safety behavior of mechanically induced short circuit for lithium-ion pouch batteries [J]. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2): 020904. doi: 10.1115/1.4048705
    [18] 范文杰, 薛鹏程, 王根伟, 等. 压缩载荷作用下锂离子电池的安全性能 [J]. 高压物理学报, 2019, 33(6): 065901. doi: doi:10.11858/gywlxb.20190752

    FAN W J, XUE P C, WANG G W, et al. Safety performance of power lithium ion battery under compressive load [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 065901. doi: doi:10.11858/gywlxb.20190752
    [19] WANG Q S, MAO B B, STOLIAROV S I, et al. A review of lithium-ion battery failure mechanisms and fire prevention strategies [J]. Progress in Energy and Combustion Science, 2019, 73: 95–131. doi: 10.1016/j.pecs.2019.03.002
    [20] PAN Z X, SEDLATSCHEK T, XIA Y. Effect of state-of-charge and air exposure on tensile mechanical properties of lithium-ion battery electrodes [J]. Journal of The Electrochemical Society, 2020, 167(9): 090517. doi: 10.1149/1945-7111/ab8804
    [21] DUAN X D, WANG H C, JIA Y K, et al. A multiphysics understanding of internal short circuit mechanisms in lithium-ion batteries upon mechanical stress abuse [J]. Energy Storage Materials, 2022, 45: 667–679. doi: 10.1016/j.ensm.2021.12.018
    [22] LI H G, LIU B H, ZHOU D, et al. Coupled mechanical-electrochemical-thermal study on the short-circuit mechanism of lithium-ion batteries under mechanical abuse [J]. Journal of the Electrochemical Society, 2020, 167(12): 120501. doi: 10.1149/1945-7111/aba96f
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  45
  • PDF下载量:  22
出版历程
  • 收稿日期:  2023-10-11
  • 修回日期:  2023-11-03
  • 网络出版日期:  2024-04-01
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回