高压极端条件下的富氢高温超导体

陈胤圻 王洪波

陈胤圻, 王洪波. 高压极端条件下的富氢高温超导体[J]. 高压物理学报, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842
引用本文: 陈胤圻, 王洪波. 高压极端条件下的富氢高温超导体[J]. 高压物理学报, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842
CHEN Yinqi, WANG Hongbo. Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842
Citation: CHEN Yinqi, WANG Hongbo. Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842

高压极端条件下的富氢高温超导体

doi: 10.11858/gywlxb.20230842
基金项目: 国家自然科学基金(12374007);中国科学院战略性先导科技专项(XDB33000000)
详细信息
    作者简介:

    陈胤圻(1997-),男,硕士,主要从事高压下富氢超导体研究. E-mail:yinqi23@mails.jlu.edu.cn

    通讯作者:

    王洪波(1981-),男,教授,主要从事高压下富氢超导体研究. E-mail:whb2477@jlu.edu.cn

  • 中图分类号: O521.2

Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure

  • 摘要: 自从在汞中发现4.2 K的超导转变温度以来,寻找室温超导体一直是凝聚态物理领域的研究热点。近年来,科学家在高压极端条件下发现了以共价型H3S(Tc=203 K)和离子型LaH10Tc=250 K)、CaH6Tc=215 K)为代表的系列高温超导体,先后刷新了超导转变温度纪录,这些工作开启了学界在富氢化合物中寻找室温超导体的新篇章。本文重点介绍了目前高压下二元和三元富氢高温超导体的理论模拟以及实验制备和表征方面的相关研究进展,分析在富氢化合物中发现室温超导体面临的挑战和可能途径,为实现室温超导做出基础性贡献。

     

  • 图  (a) H3S的晶体结构(大球为硫原子,小球为氢原子),(b) 155 GPa高压下H3S在零场冷却(ZFC)和外加20 Oe有场冷却(FC)的磁化强度[32]

    Figure  1.  (a) Crystal structure of H3S (The large and small balls represent sulfur atoms and hydrogen atoms, respectively.);(b) magnetization measurements of H3S at 155 GPa under zero-field cooling (ZFC) and 20 Oe field cooling (FC) [32]

    图  笼型超氢化合物MH6(a)、MH9(b)和MH10(c)的晶体结构(M为碱土、稀土金属原子,大球为金属原子,小球为氢原子)[42],(d) 135~150 GPa高压下LaH10的电阻随温度的变化曲线[48](插图为超导转变温度与压强的关系[47]

    Figure  2.  Crystal structures of the clathrate superhydrides MH6 (a), MH9 (b), and MH10 (c) (M represents alkaline earth orrare earth metal atoms. The large and small balls represent metal atoms and hydrogen atoms, respectively.)[42];(d) resistance measurements on clathrate LaH10 in the pressure range of 135–150 GPa [48] (The inset showsthe relationship between superconducting transition temperature and pressure[47])

    图  实验制备的典型富氢超导体(红色标注的富氢超导体结构中已含有原子氢)

    Figure  3.  Typical hydrogen-rich superconductors that have been experimentally synthesized (Structures of the hydrogen-rich superconductors marked in red contain atomic hydrogen.)

  • [1] ONNES H K. The resistance of pure mercury at helium temperatures [J]. Communications Physics Laboratory Leiden University, 1911: 122b-124c.
    [2] TESTARDI L R, WERNICK J H, ROYER W A. Superconductivity with onset above 23 °K in Nb-Ge sputtered films [J]. Solid State Communications, 1974, 15(1): 1–4. doi: 10.1016/0038-1098(74)90002-7
    [3] BEDNORZ J G, MÜELLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189–193. doi: 10.1007/BF01303701
    [4] 赵忠贤, 陈立泉, 杨乾声, 等. Ba-Y-Cu氧化物液氮温区的超导电性 [J]. 科学通报, 1987, 32(6): 412–414. doi: 10.1360/csb1987-32-6-412
    [5] WU M K, ASHBURN J R, TORNG C J, et al. Superconductivity at 93 K in a new mixed-phase Y-Ba-Cu-O compound system at ambient pressure [J]. Physical Review Letters, 1987, 58(9): 908–910. doi: 10.1103/PhysRevLett.58.908
    [6] WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF [J]. Journal of Physics: Condensed Matter, 2009, 21(14): 142203. doi: 10.1088/0953-8984/21/14/142203
    [7] GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Ca m −1Cu m O2 m +2+ δ ( m = 1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260
    [8] BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity [J]. Physical Review, 1957, 106(1): 162–164. doi: 10.1103/PhysRev.106.162
    [9] WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [10] ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [11] BARBEE T W III, GARCÍA A, COHEN M L. First-principles prediction of high-temperature superconductivity in metallic hydrogen [J]. Nature, 1989, 340(6232): 369–371. doi: 10.1038/340369a0
    [12] PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625
    [13] MCMAHON J M, CEPERLEY D M. High-temperature superconductivity in atomic metallic hydrogen [J]. Physical Review B, 2011, 84(14): 144515. doi: 10.1103/PhysRevB.84.144515
    [14] DIAS R, NOKED O, SILVERA I F. New low temperature phase in dense hydrogen: the phase diagram to 421 GPa [EB/OL]. arXiv: 1603.02162. (2016-05-26) [2023-10-30]. https://arxiv.org/abs/1603.02162.
    [15] EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
    [16] LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [17] SATTERTHWAITE C B, TOEPKE I L. Superconductivity of hydrides and deuterides of thorium [J]. Physical Review Letters, 1970, 25(11): 741–743. doi: 10.1103/PhysRevLett.25.741
    [18] GILMAN J J. Lithium dihydrogen fluoride—an approach to metallic hydrogen [J]. Physical Review Letters, 1971, 26(10): 546–548. doi: 10.1103/PhysRevLett.26.546
    [19] ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [20] SKOSKIEWICZ T. Superconductivity in the palladium-hydrogen and palladium-nickel-hydrogen systems [J]. Physica Status Solidi (A), 1972, 11(2): K123–K126. doi: 10.1002/pssa.2210110253
    [21] BUCKEL W, STRITZKER B. Superconductivity of palladium and Pd-alloys charged with H or D by ion implantation at helium temperatures [M]//PICRAUX S T, EERNISSE E P, VOOK F L. Applications of Ion Beams to Metals. Boston: Springer, 1974: 3−13.
    [22] WELTER J M, JOHNEN F J. Superconducting transition temperature and low temperature resistivity in the niobium-hydrogen system [J]. Zeitschrift für Physik B Condensed Matter, 1977, 27(3): 227–232. doi: 10.1007/BF01325532
    [23] FENG J, GROCHALA W, JAROŃ T, et al. Structures and potential superconductivity in SiH4 at high pressure: en route to “Metallic Hydrogen” [J]. Physical Review Letters, 2006, 96(1): 017006. doi: 10.1103/PhysRevLett.96.017006
    [24] MARTINEZ-CANALES M, BERGARA A, FENG J, et al. Pressure induced metallization of germane [J]. Journal of Physics and Chemistry of Solids, 2006, 67(9/10): 2095–2099. doi: 10.1016/j.jpcs.2006.05.050
    [25] TSE J S, YAO Y, TANAKA K. Novel superconductivity in metallic SnH4 under high pressure [J]. Physical Review Letters, 2007, 98(11): 117004. doi: 10.1103/PhysRevLett.98.117004
    [26] GAO G Y, WANG H, BERGARA A, et al. Metallic and superconducting gallane under high pressure [J]. Physical Review B, 2011, 84(6): 064118. doi: 10.1103/PhysRevB.84.064118
    [27] ZHANG L J, WANG Y C, ZHANG X X, et al. High-pressure phase transitions of solid HF, HCl, and HBr: an ab initio evolutionary study [J]. Physical Review B, 2010, 82(1): 014108. doi: 10.1103/PhysRevB.82.014108
    [28] GU Q Y, LU P C, XIA K, et al. High-temperature superconducting phase of HBr under pressure predicted by first-principles calculations [J]. Physical Review B, 2017, 96(6): 064517. doi: 10.1103/PhysRevB.96.064517
    [29] EREMETS M I, TROJAN I A, MEDVEDEV S A, et al. Superconductivity in hydrogen dominant materials: silane [J]. Science, 2008, 319(5869): 1506–1509. doi: 10.1126/science.1153282
    [30] DROZDOV A P, EREMETS M I, TROYAN I A. Superconductivity above 100 K in PH3 at high pressures [EB/OL]. arXiv: 1508.06224. (2015-08-25) [2023-10-30]. https://arxiv.org/abs/1508.06224.
    [31] LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
    [32] DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [33] DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4(1): 6968. doi: 10.1038/srep06968
    [34] EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
    [35] MOZAFFARI S, SUN D, MINKOV V S, et al. Superconducting phase diagram of H3S under high magnetic fields [J]. Nature Communications, 2019, 10(1): 2522. doi: 10.1038/s41467-019-10552-y
    [36] PÉPIN C, LOUBEYRE P, OCCELLI F, et al. Synthesis of lithium polyhydrides above 130 GPa at 300 K [J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(25): 7673–7676. doi: 10.1073/pnas.1507508112
    [37] STRUZHKIN V V, KIM D Y, STAVROU E, et al. Synthesis of sodium polyhydrides at high pressures [J]. Nature Communications, 2016, 7(1): 12267. doi: 10.1038/ncomms12267
    [38] PÉPIN C M, GENESTE G, DEWAELE A, et al. Synthesis of FeH5: a layered structure with atomic hydrogen slabs [J]. Science, 2017, 357(6349): 382–385. doi: 10.1126/science.aan0961
    [39] CHEN W H, SEMENOK D V, KVASHNIN A G, et al. Synthesis of molecular metallic barium superhydride: pseudocubic BaH12 [J]. Nature Communications, 2021, 12: 273. doi: 10.1038/s41467-020-20103-5
    [40] WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [41] FENG X L, ZHANG J R, GAO G Y, et al. Compressed sodalite-like MgH6 as a potential high-temperature superconductor [J]. RSC Advances, 2015, 5(73): 59292–59296. doi: 10.1039/C5RA11459D
    [42] PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [43] LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [44] ZHONG X, SUN Y, IITAKA T, et al. Prediction of above-room-temperature superconductivity in lanthanide/actinide extreme superhydrides [J]. Journal of the American Chemical Society, 2022, 144(29): 13394–13400. doi: 10.1021/jacs.2c05834
    [45] XIE H, YAO Y S, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
    [46] SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [47] DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [48] TROYAN I A, SEMENOK D V, KVASHNIN A G, et al. Anomalous high-temperature superconductivity in YH6 [J]. Advances Materials, 2021, 33(15): 2006832. doi: 10.1002/adma.202006832
    [49] KONG P P, MINKOV V S, KUZOVNIKOV M A, et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure [J]. Nature Communications, 2021, 12(1): 5075. doi: 10.1038/s41467-021-25372-2
    [50] SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Synthesis of yttrium superhydride superconductor with a transition temperature up to 262 K by catalytic hydrogenation at high pressures [J]. Physical Review Letters, 2021, 126(11): 117003. doi: 10.1103/PhysRevLett.126.117003
    [51] SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
    [52] CHEN W H, SEMENOK D V, HUANG X L, et al. High-temperature superconducting phases in cerium superhydride with a Tc up to 115 K below a pressure of 1 megabar [J]. Physical Review Letters, 2021, 127(11): 117001. doi: 10.1103/PhysRevLett.127.117001
    [53] ZHOU D, SEMENOK D V, XIE H, et al. High-pressure synthesis of magnetic neodymium polyhydrides [J]. Journal of the American Chemical Society, 2020, 142(6): 2803–2811. doi: 10.1021/jacs.9b10439
    [54] ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
    [55] MA L, ZHOU M, WANG Y Y, et al. Experimental clathrate superhydrides EuH6 and EuH9 at extreme pressure conditions [J]. Physical Review Research, 2021, 3(4): 043107. doi: 10.1103/PhysRevResearch.3.043107
    [56] MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [57] LI Z W, HE X, ZHANG C L, et al. Superconductivity above 200 K discovered in superhydrides of calcium [J]. Nature Communication, 2022, 13(1): 2863. doi: 10.1038/s41467-022-30454-w
    [58] SHAO M Y, CHEN W H, ZHANG K X, et al. High-pressure synthesis of superconducting clathratelike YH4 [J]. Physical Review B, 2021, 104(17): 174509. doi: 10.1103/PhysRevB.104.174509
    [59] WANG Y Y, WANG K, SUN Y, et al. Synthesis and superconductivity in yttrium superhydrides under high pressure [J]. Chinese Physics B, 2022, 31(10): 106201. doi: 10.1088/1674-1056/ac872e
    [60] HONG F, SHAN P F, YANG L X, et al. Superconductivity at ~70 K in tin hydride SnH x under high pressure [EB/OL]. arXiv: 2101.02846. (2021-01-08)[2023-10-30]. https://arxiv.org/abs/2101.02846.
    [61] HE X, ZHANG C L, LI Z W, et al. Superconductivity observed in tantalum polyhydride at high pressure [J]. Chinese Physics Letters, 2023, 40(5): 057404. doi: 10.1088/0256-307X/40/5/057404
    [62] LU K, HE X, ZHANG C L, et al. Superconductivity with Tc 116 K discovered in antimony polyhydrides [EB/OL]. arXiv: 2310.04033. (2023-10-06)[2023-10-30]. https://arxiv.org/abs/2310.04033.
    [63] LI Z W, HE X, ZHANG C L, et al. Superconductivity above 70 K observed in lutetium polyhydrides [J]. Science China Physics, Mechanics & Astronomy, 2023, 66(6): 267411.
    [64] SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
    [65] SUN Y, WANG Y C, ZHONG X, et al. High-temperature superconducting ternary Li-R-H superhydrides at high pressures (R=Sc, Y, La) [J]. Physical Review B, 2022, 106(2): 024519. doi: 10.1103/PhysRevB.106.024519
    [66] AN D C, DUAN D F, ZHANG Z H, et al. Thermodynamically stable room-temperature superconductors in Li-Na hydrides under high pressures [EB/OL]. arXiv: 2303.09805. (2023-03-17)[2023-10-30]. https://arxiv.org/abs/2303.09805.
    [67] ZHANG P Y, SUN Y, LI X, et al. Structure and superconductivity in compressed Li-Si-H compounds: density functional theory calculations [J]. Physical Review B, 2020, 102(18): 184103. doi: 10.1103/PhysRevB.102.184103
    [68] SHAO Z J, DUAN D F, MA Y B, et al. Ternary superconducting cophosphorus hydrides stabilized via lithium [J]. NPJ Computational Materials, 2019, 5(1): 104. doi: 10.1038/s41524-019-0244-6
    [69] LI X, XIE Y, SUN Y, et al. Chemically tuning stability and superconductivity of P-H compounds [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 935–939. doi: 10.1021/acs.jpclett.9b03856
    [70] DI CATALDO S, VON DER LINDEN W, BOERI L, et al. First-principles search of hot superconductivity in La-X-H ternary hydrides [J]. NPJ Computational Materials, 2022, 8: 2. doi: 10.1038/s41524-021-00691-6
    [71] LIANG X W, BERGARA A, WEI X D, et al. Prediction of high- Tc superconductivity in ternary lanthanum borohydrides [J]. Physical Review B, 2021, 104(13): 134501. doi: 10.1103/PhysRevB.104.134501
    [72] DI CATALDO S, HEIL C, VON DER LINDEN W, et al. LaBH8: towards high- Tc low-pressure superconductivity in ternary superhydrides [J]. Physical Review B, 2021, 104(2): L020511. doi: 10.1103/PhysRevB.104.L020511
    [73] ZHANG Z H, CUI T, HUTCHEON M J, et al. Design principles for high-temperature superconductors with a hydrogen-based alloy backbone at moderate pressure [J]. Physical Review Letters, 2022, 128(4): 047001. doi: 10.1103/PhysRevLett.128.047001
    [74] DU M Y, SONG H, ZHANG Z H, et al. Room-temperature superconductivity in Yb/Lu substituted clathrate hexahydrides under moderate pressure [J]. Research, 2022, 2022: 9784309. doi: 10.34133/2022/9784309
    [75] SUKMAS W, TSUPPAYAKORN-AEK P, PINSOOK U, et al. Near-room-temperature superconductivity of Mg/Ca substituted metal hexahydride under pressure [J]. Journal of Alloys and Compounds, 2020, 849: 156434. doi: 10.1016/j.jallcom.2020.156434
    [76] YANG K P, SUN H J, CHEN H L, et al. Stable structures and superconducting properties of Ca-La-H compounds under pressure [J]. Journal of Physics: Condensed Matter, 2022, 34(35): 355401. doi: 10.1088/1361-648X/ac79ed
    [77] LIU L L, PENG F, SONG P, et al. Generic rules for achieving room-temperature superconductivity in ternary hydrides with clathrate structures [J]. Physical Review B, 2023, 107(2): L020504. doi: 10.1103/PhysRevB.107.L020504
    [78] SONG P, HOU Z F, DE CASTRO P B, et al. The systematic study on the stability and superconductivity of Y-Mg-H compounds under high pressure [J]. Advanced Theory and Simulations, 2022, 5(3): 2100364. doi: 10.1002/adts.202100364
    [79] KAMEGAWA A, GOTO Y, KAKUTA H, et al. High-pressure synthesis of novel hydrides in Mg-RE-H systems (RE= Y, La, Ce, Pr, Sm, Gd, Tb, Dy) [J]. Journal of Alloys and Compounds, 2006, 408/409/410/411/412: 284−287.
    [80] SUN Y, TIAN Y F, JIANG B W, et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation [J]. Physical Review B, 2020, 101(17): 174102. doi: 10.1103/PhysRevB.101.174102
    [81] GE Y F, ZHANG F, YAO Y G. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution [J]. Physical Review B, 2016, 93(22): 224513. doi: 10.1103/PhysRevB.93.224513
    [82] GENG N S, BI T G, ZUREK E. Structural diversity and superconductivity in S-P-H ternary hydrides under pressure [J]. The Journal of Physical Chemistry C, 2022, 126(16): 7208–7220. doi: 10.1021/acs.jpcc.1c10976
    [83] SEMENOK D V, TROYAN I A, IVANOVA A G, et al. Superconductivity at 253 K in lanthanum-yttrium ternary hydrides [J]. Materials Today, 2021, 48: 18–28. doi: 10.1016/j.mattod.2021.03.025
    [84] BI J, NAKAMOTO Y, ZHANG P, et al. Stabilization of superconductive La-Y alloy superhydride with Tc above 90 K at megabar pressure [J]. Materials Today Physics, 2022, 28: 100840. doi: 10.1016/j.mtphys.2022.100840
    [85] BI J K, NAKAMOTO Y, ZHANG P Y, et al. Giant enhancement of superconducting critical temperature in substitutional alloy (La, Ce)H9 [J]. Nature Communications, 2022, 13(1): 5952. doi: 10.1038/s41467-022-33743-6
    [86] CHEN S, QIAN Y C, HUANG X L, et al. High-temperature superconductivity up to 223 K in the Al stabilized metastable hexagonal lanthanum superhydride [J]. National Science Review, 2023, 11(1): nwad107. doi: 10.1093/nsr/nwad107
    [87] TALANTSEV E F. Electron-phonon coupling constant and BCS ratios in LaH10- y doped with magnetic rare-earth element [J]. Superconductor Science and Technology, 2022, 35(9): 095008. doi: 10.1088/1361-6668/ac7d78
    [88] SONG Y G, BI J K, NAKAMOTO Y, et al. Stoichiometric ternary superhydride LaBeH8 as a new template for high-temperature superconductivity at 110 K under 80 GPa [J]. Physical Review Letters, 2023, 130(26): 266001. doi: 10.1103/PhysRevLett.130.266001
    [89] HIRSCH J E, MARSIGLIO F. Intrinsic hysteresis in the presumed superconducting transition of hydrides under high pressure [EB/OL]. arXiv: 2101.07208. (2021-01-26)[2023-10-30]. https://arxiv.org/abs/2101.07208.
    [90] HIRSCH J E, MARSIGLIO F. Nonstandard superconductivity or no superconductivity in hydrides under high pressure [J]. Physical Review B, 2021, 103(13): 134505. doi: 10.1103/PhysRevB.103.134505
    [91] EREMETS M I, MINKOV V S, DROZDOV A P, et al. High-temperature superconductivity in hydrides: experimental evidence and details [J]. Journal of Superconductivity and Novel Magnetism, 2022, 35(4): 965–977. doi: 10.1007/s10948-022-06148-1
    [92] MINKOV V S, BUD’KO S L, BALAKIREV F F, et al. Magnetic field screening in hydrogen-rich high-temperature superconductors [J]. Nature Communications, 2022, 13(1): 3194. doi: 10.1038/s41467-022-30782-x
    [93] HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061
    [94] BHATTACHARYYA P, CHEN W H, HUANG X L, et al. Imaging the meissner effect and flux trapping in a hydride superconductor at megabar pressures using a nanoscale quantum sensor [EB/OL]. arXiv: 2306.03122. (2023-06-05)[2023-10-30]. https://arxiv.org/abs/2306.03122.
    [95] TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
  • 加载中
图(3)
计量
  • 文章访问数:  259
  • HTML全文浏览量:  57
  • PDF下载量:  61
出版历程
  • 收稿日期:  2023-10-31
  • 修回日期:  2024-01-18
  • 录用日期:  2024-01-18
  • 网络出版日期:  2024-04-11
  • 刊出日期:  2024-04-09

目录

    /

    返回文章
    返回