Citation: | JI Guangfu. Some Viewpoints on the Simulation Research of Energetic Materials under Extreme Conditions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 010102. doi: 10.11858/gywlxb.20240911 |
[1] |
GOOS J G, KLERK P D. Energetic materials: from primary explosives to complex high-power charge systems [M]. New York: Springer, 2011.
|
[2] |
MENIKOFF R, SHAW M. High-pressure shock compression of solids Ⅷ [M]. New York: Springer, 2006.
|
[3] |
GAPONTSEV V V, LOMONOSOV I V. High energy materials: synthesis, characterization and applications [M]. New York: Wiley, 2015.
|
[4] |
ZHANG Q, LEE J H. Computational methods in energetic materials research [M]. New York: Springer, 2010.
|
[5] |
KUHN N J, BONAZZA R. Rock blasting and overbreak control [M]. Boca Raton: CRC Press, 2010.
|
[6] |
LEE P S, TARVER C M. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. New York: Springer, 2000.
|
[7] |
KLER L A, et al. Energetic materials: an overview [J]. Propellants, Explosives, Pyrotechnics, 2007, 32(3): 126–130.
|
[8] |
EGAN D L. Penetrating munitions [M]//CARLUCCI D E. Ballistics: Theory and Design of Guns and Ammunition. Boca Raton: CRC Press, 2007: 343–366.
|
[9] |
COOPER P W. Explosives engineering [M]. Weinheim: Wiley-VCH, 1997.
|
[10] |
LEWIS J S. Missile defense: the space and missile race [M]. Singapore: World Scientific Publishing Company, 2008.
|
[11] |
FORNEY G P. Demolition and blasting techniques [M]. New York: McGraw-Hill Education, 2009.
|
[12] |
TELFORD W M, GELDART L P, SHERIFF R E. Applied geophysics [M]. Cambridge: Cambridge University Press, 1990.
|
[13] |
LEE R H, TRUEMAN D R. Underwater explosives [M]. New York: Springer, 2009.
|
[14] |
ISHM International Society of High Mountain Medicine. Emergency avalanche rescue guidelines [M]. ISHM International Society of High Mountain Medicine, 2007.
|
[15] |
ZHANG Q, LEE J H. Computational methods in energetic materials research [M]. New York: Springer, 2018.
|
[16] |
MENIKOFF R, SHAW M S. Simulation of the detonation of energetic materials [J]. Annual Review of Physical Chemistry, 2006, 57: 21–40.
|
[17] |
ZHU W, HUANG F. Understanding the structure-property relationships of energetic materials via high-throughput simulations [J]. Journal of Physical Chemistry C, 2017, 121(30): 16667–16675.
|
[18] |
肖慎修, 王崇愚, 陈天朗. 密度泛函理论的离散变分方法在化学和材料物理中的应用[M]. 北京: 科学出版社, 1998.
XIAO S X, WANG C Y, CHEN T L. Application of the discrete variational method of density functional theory in chemistry and materials physics [M]. Beijing: Science Press, 1998.
|
[19] |
KLIPPENSTEIN S J, HASE W L. Computational chemistry of energetic materials [M]//Energetic Materials: Synthesis, Characterization and Applications. New York: Springer, 2017: 29–58.
|
[20] |
LI W G, HONG D, LI X H, et al. Prediction of chemical bond breaking in insensitive high-energy energetic materials at high temperature and pressure [J]. Journal Applied Physics, 2023, 133: 185103. doi: 10.1063/5.0148260
|
[21] |
MENIKOFF R, SHAW M S. High-pressure shock compression of solids Ⅶ [M]. New York: Springer, 2014.
|
[22] |
MEYER R. Explosives engineering [M]. New York: Wiley, 2006.
|
[23] |
SUTTON G P, BIBLARZ O. Rocket propulsion elements [M]. 9th ed. Hoboken: Wiley, 2017.
|
[24] |
HURST G. Fireworks: the art, science, and technique [M]. New York: Fireworks Publishing, 2002.
|
[25] |
陈玉超. 含能纳米铝粉的制备与性能 [M]. 大连: 大连理工大学, 2015.
CHEN Y C. Preparation and properties of energetic nano-aluminum powder [M]. Dalian: Dalian University of Technology, 2015.
|
[26] |
徐若千, 张俊林, 唐晓飞, 等. 含能聚合物制备研究最新进展 [J]. 火炸药学报, 2020, 5: 465–476.
XU R Q, ZHANG J L, TANG X F, et al. Recent advances in the preparation of energetic polymers [J]. Chinese Journal of Explosives & Propellants, 2020, 5: 465–476.
|
[27] |
KLAPÖTKE T M. Chemical aspects of explosives [M]. Berlin: Springer, 2011.
|
[28] |
ZEL'DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. Mineola: Dover Publications, 2002.
|
[29] |
袁嘉男, 李建福, 王晓丽. 高能量密度氮的研究进展 [J]. 高压物理学报, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797
YUAN J N, LI J F, WANG X L. Research progress of high energy density nitrogen [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040102. doi: 10.11858/gywlxb.20230797
|
[30] |
翟航, 杨锦坭, 王建云, 等. 高压下主族金属富氮化合物的结构与含能特性 [J]. 高压物理学报, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810
ZHAI H, YANG J N, WANG J Y, et al. Structure and energy properties of nitrogen-rich compounds of main group metals under high pressure [J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 040101. doi: 10.11858/gywlxb.20230810
|
[31] |
王泽山. 含能材料概论 [M]. 哈尔滨: 哈尔滨工业大学出版社, 2006.
WANG Z S. Introduction to energetic materials [M]. Harbin: Harbin Institute of Technology Press, 2006.
|
[32] |
GOOS J G, KLERK P D. Energetic materials: from primary explosives to complex high-power charge systems [M]. Berlin: Springer, 2010.
|
[33] |
杜永平. 强自旋轨道耦合体系的第一性原理研究 [D]. 南京: 南京大学, 2016.
DU Y P. First-principles study of strong spin-orbit coupling systems[D]. Nanjing: Nanjing University, 2016.
|
[34] |
RINDERSPACHER B C. Energetic materials optimization via constrained search: ADA618010 [R]. USA: Army Research Laboratory, 2015.
|
[35] |
LIU H, ZHANG Y. Explosion and shock responses of energetic materials under laser irradiation [J]. Journal of Applied Physics, 2018, 114(20): 204901.
|
[36] |
FRENKEL D, SMIT B. Understanding molecular simulation: from algorithms to applications [M]. San Diego: Academic Press, 2002.
|
[37] |
CHEN M, WANG Q. Thermal effects and phase transitions of energetic materials under laser irradiation [J]. Journal of Applied Physics, 2018, 114(17): 174901.
|
[38] |
LEVINE I N. Quantum computational chemistry [M]. New York: Pearson Education, 2009.
|
[39] |
YAKUB L N. Polymerization in highly compressed nitrogen [J]. Low Temperature Physics, 2016, 42(1): 1–16. doi: 10.1063/1.4940225
|
[40] |
LIU S J, ZHAO L, YAO M G, et al. Novel all-nitrogen molecular crystals of aromatic N10 [J]. Advanced Science, 2020, 7(10): 1902320. doi: 10.1002/advs.201902320
|
[41] |
LANG Q, SUN Q, XU Y G, et al. From mono-rings to bridged bi-rings to caged bi-rings: a promising design strategy for all-nitrogen high-energy-density materials N10 and N12 [J]. New Journal of Chemistry, 2021, 45(14): 6379–6385. doi: 10.1039/D1NJ00522G
|
[42] |
BONDARCHUK S V. Bipentazole (N10): a low-energy molecular nitrogen allotrope with high intrinsic stability [J]. The Journal of Physical Chemistry Letter, 2020, 11(14): 5544–5548. doi: 10.1021/acs.jpclett.0c01542
|
[43] |
肖俊灵. 理论计算入门手册——分子模拟、量子化学、第一性原理、有限元, 最全概念总结 [EB/OL]. (2024-03-27)[2024-10-16]. https://blog.csdn.net/E_Magic_Cube/article/details/137096324.
|
[44] |
徐远骥. 强关联电子体系的连续时间量子蒙特卡洛方法 [D]. 长沙: 湖南大学, 2013.
XU Y J. Continuous-time quantum Monte Carlo methods for strongly correlated electron systems [D]. Changsha: Hunan University, 2013.
|
[45] |
陈正隆, 徐为人, 汤立达. 分子模拟的理论与实践[M]. 北京: 化学工业出版社, 2007.
CHEN Z L, XU W R, TANG L D. Molecular simulation of theory and practice [M]. Beijing: Chemical Industry Press, 2007.
|
[46] |
ZHANG J D, GUO W, YAO Y G. Deep potential molecular dynamics study of Chapman-Jouguet detonation events of energetic materials [J]. The Journal of Physical Chemistry Letters, 2023, 14(32): 7141–7148. doi: 10.1021/acs.jpclett.3c01392
|
[47] |
刘海, 李启楷, 何远航. 高速冲击压缩梯恩梯的分子动力学模拟 [J]. 力学学报, 2015, 47(1): 174–179. doi: 10.6052/0459-1879-14-141
LIU H, LI Q K, HE Y H. Molecular dynamics simulations of high velocity shock compressed TNT [J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(1): 174–179. doi: 10.6052/0459-1879-14-141
|
[48] |
许元刚. 唑类含能化合物的合成、结构与性能研究 [D]. 南京: 南京理工大学, 2020.
XU Y G. Synthesis, structure and properties of azole-containing energetic compounds [D]. Nanjing: Nanjing University of Science and Technology, 2020.
|
[49] |
仇裕成, 王健, 同红海. 钝感HNS-Ⅳ炸药飞片冲击起爆数值仿真 [J]. 兵工自动化, 2017, 36(3): 59–62, 65. doi: 10.7690/bgzdh.2017.03.015
QIU Y C, WANG J, TONG H H. Numerical simulation of flyer impacting initiation insensitive explosive HNS-Ⅳ [J]. Ordnance Industry Automation, 2017, 36(3): 59–62, 65. doi: 10.7690/bgzdh.2017.03.015
|
[50] |
张蕾, 赵艳红, 姜胜利, 等. CL-20及其共晶炸药热力学稳定性与爆轰性能的理论研究 [J]. 含能材料, 2018, 26(6): 464–470. doi: 10.11943/j.issn.1006-9941.2018.06.001
ZHANG L, ZHAO Y H, JIANG S L, et al. Theoretical study on thermodynamic stablity and detonation performance of CL-20 and its cocrystal [J]. Chinese Journal of Energetic Materials, 2018, 26(6): 464–470. doi: 10.11943/j.issn.1006-9941.2018.06.001
|
[51] |
高加力. 新一代高精度生物大分子力场 [J]. 中国科学基金, 2018, 32(1): 103–106. doi: 10.16262/j.cnki.1000-8217.2018.01.024
GAO J L. Next generation force fields for biological macromolecules [J]. Bulletin of National Natural Science Foundation of China, 2018, 32(1): 103–106. doi: 10.16262/j.cnki.1000-8217.2018.01.024
|
[52] |
宋亮, 梅争, 张天成, 等. ReaxFF力场方法及其在含能材料中应用的研究进展 [J]. 火炸药学报, 2023, 46(6): 465–483. doi: 10.14077/j.issn.1007-7812.202211009
SONG L, MEI Z, ZHANG T C, et al. Overview of ReaxFF force field method and it’s application in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2023, 46(6): 465–483. doi: 10.14077/j.issn.1007-7812.202211009
|
[53] |
汪志诚. 蒙特卡洛方法在统计物理中的应用 [M]. 北京: 高等教育出版社, 2005.
WANG Z C. Monte Carlo methods in statistical physics [M]. Beijing: Higher Education Press, 2005.
|
[54] |
RUBENSTEIN B. Introduction to the variational Monte Carlo method in quantum chemistry and physics [M]//WU J. Variational Methods in Molecular Modeling: Molecular Modeling and Simulation. Singapore: Springer, 2017.
|
[55] |
周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟 [J]. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
ZHOU T T, HUANG F L. Thermal expansion behaviors and phase transitions of HMX polymorphs via ReaxFF molecular dynamics simulations [J]. Acta Physica Sinica, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
|
[56] |
徐维森, 袁姣楠, 张秀清, 等. 含能材料的相变研究进展 [J]. 含能材料, 2018, 26(1): 21–33. doi: 10.11943/j.issn.1006-9941.2018.01.003
XU W S, YUAN J N, ZHANG X Q, et al. Review on the phase transition of energetic materials [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 21–33. doi: 10.11943/j.issn.1006-9941.2018.01.003
|
[57] |
REN W L, FU W Z, WU X J, et al. Towards the ground state of molecules via diffusion Monte Carlo on neural networks [J]. Nature Communications, 2023, 14(1): 1860. doi: 10.1038/S41467-023-37609-3
|
[58] |
曾攀. 有限元方法 [M]. 北京: 清华大学出版社, 2008.
ZENG P. The finite element method [M]. Beijing: Tsinghua University Press, 2008.
|
[59] |
GUDI R D. Finite element analysis for heat transfer: theory and applications [M]. New York: Wiley, 2010.
|
[60] |
张程健. 带截锥形隔板聚能装药结构参数匹配的优化方法研究 [D]. 太原: 中北大学, 2020.
ZHANG C J. Study on optimization method of structural parameter matching of shaped charge with truncated cone partition [D]. Taiyuan: North University of China, 2020.
|
[61] |
徐浩铭, 顾文彬, 唐勇, 等. 串联EFP装药结构参数优化实验研究 [J]. 爆炸与冲击, 2013, 33(3): 287–291. doi: 10.11883/1001-1455(2013)03-0287-05
XU H M, GU W B, TANG Y, et al. Experimental study on structural parameter optimization of tandem explosively-formed projectile charges [J]. Explosion and Shock Waves, 2013, 33(3): 287–291. doi: 10.11883/1001-1455(2013)03-0287-05
|
[62] |
MAO X, MA T B, LIU J. Structure optimization of linear shaped charge based on different explosives [J]. Propellants, Explosives, Pyrotechnics, 2024, 49(5): e202300321. doi: 10.1002/prep.202300321
|
[63] |
阚润哲, 聂建新, 刘正, 等. 复合装药密闭空间爆炸能量释放特性 [J]. 火炸药学报, 2022, 45(3): 377–382. doi: 10.14077/j.issn.1007-7812.202203020
KAN R Z, NIE J X, LIU Z, et al. Energy release characteristics of composite charge in confined space explosion [J]. Chinese Journal of Explosives & Propellants, 2022, 45(3): 377–382. doi: 10.14077/j.issn.1007-7812.202203020
|
[64] |
王铭. 会聚激光辐照金属约束含能材料结构的机理研究 [D]. 长春: 中国科学院大学, 2022.
WANG M. Study on the mechanism of metal-constrained energetic materials irradiated by convergent laser [D]. Changchun: University of Chinese Academy of Sciences, 2022.
|