Volume 39 Issue 1
Jan 2024
Turn off MathJax
Article Contents
SHI Xinhui, YANG Lei, YANG Xue, KANG Hongliang, YUAN Wenshuo, LIU Fusheng. Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814
Citation: SHI Xinhui, YANG Lei, YANG Xue, KANG Hongliang, YUAN Wenshuo, LIU Fusheng. Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814

Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions

doi: 10.11858/gywlxb.20240814
  • Received Date: 17 May 2024
  • Rev Recd Date: 30 Jun 2024
  • Issue Publish Date: 05 Jan 2024
  • Studying the impact initiation radiation and temperature of polymer bonded explosives in the shock wave flow is crucial for understanding and predicting their reaction kinetics and detonation behavior. This work uses the two-stage light gas gun for shock loading, transient radiation pyrometer temperature measurement, and laser displacement interference system, to study the thermal radiation characteristics of the polymer bonded explosive/lithium fluoride window interface and its correlation with the interface pressure. This work optimized the polymer bonded explosives sample preparation method, significantly suppressed the luminous background of the wrapped gas and interface gap, and provided interface radiance data and interface temperature data. The results show that the time attenuation characteristics of the interface temperature during two consecutive impact loading processes are closely related to the isentropic expansion behavior of the reaction products, and the interface temperature reflects the temperature evolution behavior of the products at the interface. It provides a feasible technical way to directly obtained the reaction product temperature of heterogeneous composite explosives during the ignition reaction and energy release.

     

  • loading
  • [1]
    BRADY J J, ARGIRAKIS B L, GORDON A D, et al. Polymorphic phase control of RDX-based explosives [J]. Applied Spectroscopy, 2018, 72(1): 28–36. doi: 10.1177/0003702817712259
    [2]
    YOUNG G, WILSON D P, KESSLER M, et al. Ignition and combustion characteristics of Al/RDX/NC nanostructured microparticles [J]. Combustion Science and Technology, 2021, 193(13): 2259–2275. doi: 10.1080/00102202.2020.1733541
    [3]
    WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. doi: 10.1016/j.dt.2021.05.009
    [4]
    GRILLI N, KOSLOWSKI M. The effect of crystal orientation on shock loading of single crystal energetic materials [J]. Computational Materials Science, 2018, 155: 235–245. doi: 10.1016/j.commatsci.2018.08.059
    [5]
    SZALA M. Development trends in artillery ammunition propellants [J]. Materiały Wysokoenergetyczne, 2020, 12(2): 5–16. doi: 10.22211/matwys/0196
    [6]
    LI Y, JIANG C L, WANG Z C, et al. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading [J]. Materials, 2016, 9(11): 936. doi: 10.3390/ma9110936
    [7]
    ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. doi: 10.1002/prep.201500351
    [8]
    BRILL T B, RUSSELL T P, TAO W C, et al. Decomposition, combustion, and detonation chemistry of energetic materials [C]//Proceedings of the Materials Research Society Symposium Proceedings. Pittsburgh: Materials Research Society, 1996.
    [9]
    MA J C, CHINNAM A K, CHENG G B, et al. 1, 3, 4-oxadiazole bridges: a strategy to improve energetics at the molecular level [J]. Angewandte Chemie, 2021, 133(10): 5557–5564. doi: 10.1002/ange.202014207
    [10]
    钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展 [J]. 含能材料, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002

    ZHONG K, LIU J, WANG L Y, et al. Lssue of ‘hot-spot’ in energetic materials: recent progresses of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002
    [11]
    经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 121−128.

    JING F Q, CHEN J X. Dynamic high-pressure generation principle and related technologies [M]. Beijing: National Defense Industry Press, 2006: 121−128.
    [12]
    BARUA A, HORIE Y, ZHOU M. Energy localization in HMX-estane polymer-bonded explosives during impact loading [J]. Journal of Applied Physics, 2012, 111(5): 054902. doi: 10.1063/1.3688350
    [13]
    BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold [J]. Journal of Applied Physics, 2013, 113(6): 064906. doi: 10.1063/1.4792001
    [14]
    OWENS F J, SHARMA J. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids [J]. Journal of Applied Physics, 1980, 51(3): 1494–1497. doi: 10.1063/1.327798
    [15]
    BOTCHER T R, WIGHT C A. Explosive thermal decomposition mechanism of RDX [J]. The Journal of Physical Chemistry, 1994, 98(21): 5441–5444. doi: 10.1021/j100072a009
    [16]
    DATTELBAUM D M, SHEFFIELD S A, GUSTAVSEN R L. In-situ electromegnetic gauging and its application to shock compression science and detonation physcis: LA-UR-11-00984 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
    [17]
    BOURNE N K, MILNE A M. The temperature of a shock-collapsed cavity [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459(2036): 1851–1861. doi: 10.1098/rspa.2002.1101
    [18]
    KARAKHANOV S M, PLASTININ A V, BORDZILOVSKII D S, et al. Time of hot-spot formation in shock compression of microballoons in a condensed medium [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 350–357. doi: 10.1134/S0010508216030151
    [19]
    BOURNE N K, FIELD J E. Shock-induced collapse and luminescence by cavities [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1751): 295–311. doi: 10.1098/rsta.1999.0328
    [20]
    WANG Y P, LIU F S, LIU Q J, et al. Raman spectra of liquid nitromethane under singly shocked conditions [J]. Chinese Journal of Chemical Physics, 2016, 29(2): 161–166. doi: 10.1063/1674-0068/29/cjcp1503037
    [21]
    谭华. 金属的冲击波温度测量(Ⅰ)—高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003

    TAN H. Shock temperature measurements for metal (Ⅰ)—calibration of pyrometers and data reduction for the temperature at the interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003
    [22]
    SHEN Y R, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
    [23]
    GIBBS T R, POPOLATO A. LASL explosive property data [M]. Berkeley: University of California Press, 1980: 141–151.
    [24]
    MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160
    [25]
    COPPARI F, LAZICKI A, FRATANDUONO D, et al. New Hugoniot measurements on LiF and diamond from laser-driven compression [C]//Proceedings of the APS Topical Conference on the Shock Compression of Matter, 2015.
    [26]
    LU J P. Evaluation of the thermochemical code-CHEETAH 2.0 for modelling explosives performance: DSTO-TR-1199 [R]. Aeronautical and Maritime Research Laboratory, 2001: 1−24.
    [27]
    HOBBS M L, BAER M R. Calibrating the BKW-EOS with a large product species data base and measured C-J properties [C]//Proceedings of the 10th Symposium (International) on Detonation. Boston: Office of Naval Research, 1993: 409−418.
    [28]
    HENGLEIN F A. Chemical technology [M]. 2nd ed. Oxford: Pergamon Press, 1969: 718−728.
    [29]
    RAVINDRAN T R, RAJAN R, VENKATESAN V. Review of phase transformations in energetic materials as a function of pressure and temperature [J]. The Journal of Physical Chemistry C, 2019, 123(48): 29067–29085. doi: 10.1021/acs.jpcc.9b04885
    [30]
    LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. doi: 10.1023/A:1002898505288
    [31]
    KARIMI M, OCHS B, LIU Z F, et al. Measurement of methane autoignition delays in carbon dioxide and argon diluents at high pressure conditions [J]. Combustion and Flame, 2019, 204: 304–319. doi: 10.1016/j.combustflame.2019.03.020
    [32]
    CHEN J N, LI A N, HUANG Z, et al. Numerical study on CO2 non-equilibrium condensation considering shock waves for the potential of flue gas decarbonization [J]. International Communications in Heat and Mass Transfer, 2023, 144: 106749. doi: 10.1016/j.icheatmasstransfer.2023.106749
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(2)

    Article Metrics

    Article views(113) PDF downloads(23) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return