Citation: | SHI Xinhui, YANG Lei, YANG Xue, KANG Hongliang, YUAN Wenshuo, LIU Fusheng. Thermal Radiation Characteristics of RDX-Based PBX Explosives during Shock-Induced Ignition Reactions[J]. Chinese Journal of High Pressure Physics, 2025, 39(1): 011301. doi: 10.11858/gywlxb.20240814 |
[1] |
BRADY J J, ARGIRAKIS B L, GORDON A D, et al. Polymorphic phase control of RDX-based explosives [J]. Applied Spectroscopy, 2018, 72(1): 28–36. doi: 10.1177/0003702817712259
|
[2] |
YOUNG G, WILSON D P, KESSLER M, et al. Ignition and combustion characteristics of Al/RDX/NC nanostructured microparticles [J]. Combustion Science and Technology, 2021, 193(13): 2259–2275. doi: 10.1080/00102202.2020.1733541
|
[3] |
WANG B B, LIAO X, DELUCA L T, et al. Effects of particle size and content of RDX on burning stability of RDX-based propellants [J]. Defence Technology, 2022, 18(7): 1247–1256. doi: 10.1016/j.dt.2021.05.009
|
[4] |
GRILLI N, KOSLOWSKI M. The effect of crystal orientation on shock loading of single crystal energetic materials [J]. Computational Materials Science, 2018, 155: 235–245. doi: 10.1016/j.commatsci.2018.08.059
|
[5] |
SZALA M. Development trends in artillery ammunition propellants [J]. Materiały Wysokoenergetyczne, 2020, 12(2): 5–16. doi: 10.22211/matwys/0196
|
[6] |
LI Y, JIANG C L, WANG Z C, et al. Experimental study on reaction characteristics of PTFE/Ti/W energetic materials under explosive loading [J]. Materials, 2016, 9(11): 936. doi: 10.3390/ma9110936
|
[7] |
ZEMAN S, JUNGOVÁ M. Sensitivity and performance of energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426–451. doi: 10.1002/prep.201500351
|
[8] |
BRILL T B, RUSSELL T P, TAO W C, et al. Decomposition, combustion, and detonation chemistry of energetic materials [C]//Proceedings of the Materials Research Society Symposium Proceedings. Pittsburgh: Materials Research Society, 1996.
|
[9] |
MA J C, CHINNAM A K, CHENG G B, et al. 1, 3, 4-oxadiazole bridges: a strategy to improve energetics at the molecular level [J]. Angewandte Chemie, 2021, 133(10): 5557–5564. doi: 10.1002/ange.202014207
|
[10] |
钟凯, 刘建, 王林元, 等. 含能材料中“热点”的理论模拟研究进展 [J]. 含能材料, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002
ZHONG K, LIU J, WANG L Y, et al. Lssue of ‘hot-spot’ in energetic materials: recent progresses of modeling and calculations [J]. Chinese Journal of Energetic Materials, 2018, 26(1): 11–20. doi: 10.11943/j.issn.1006-9941.2018.01.002
|
[11] |
经福谦, 陈俊祥. 动高压原理与技术 [M]. 北京: 国防工业出版社, 2006: 121−128.
JING F Q, CHEN J X. Dynamic high-pressure generation principle and related technologies [M]. Beijing: National Defense Industry Press, 2006: 121−128.
|
[12] |
BARUA A, HORIE Y, ZHOU M. Energy localization in HMX-estane polymer-bonded explosives during impact loading [J]. Journal of Applied Physics, 2012, 111(5): 054902. doi: 10.1063/1.3688350
|
[13] |
BARUA A, KIM S, HORIE Y, et al. Ignition criterion for heterogeneous energetic materials based on hotspot size-temperature threshold [J]. Journal of Applied Physics, 2013, 113(6): 064906. doi: 10.1063/1.4792001
|
[14] |
OWENS F J, SHARMA J. X-ray photoelectron spectroscopy and paramagnetic resonance evidence for shock-induced intramolecular bond breaking in some energetic solids [J]. Journal of Applied Physics, 1980, 51(3): 1494–1497. doi: 10.1063/1.327798
|
[15] |
BOTCHER T R, WIGHT C A. Explosive thermal decomposition mechanism of RDX [J]. The Journal of Physical Chemistry, 1994, 98(21): 5441–5444. doi: 10.1021/j100072a009
|
[16] |
DATTELBAUM D M, SHEFFIELD S A, GUSTAVSEN R L. In-situ electromegnetic gauging and its application to shock compression science and detonation physcis: LA-UR-11-00984 [R]. Los Alamos: Los Alamos National Laboratory, 2011.
|
[17] |
BOURNE N K, MILNE A M. The temperature of a shock-collapsed cavity [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2003, 459(2036): 1851–1861. doi: 10.1098/rspa.2002.1101
|
[18] |
KARAKHANOV S M, PLASTININ A V, BORDZILOVSKII D S, et al. Time of hot-spot formation in shock compression of microballoons in a condensed medium [J]. Combustion, Explosion, and Shock Waves, 2016, 52(3): 350–357. doi: 10.1134/S0010508216030151
|
[19] |
BOURNE N K, FIELD J E. Shock-induced collapse and luminescence by cavities [J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1999, 357(1751): 295–311. doi: 10.1098/rsta.1999.0328
|
[20] |
WANG Y P, LIU F S, LIU Q J, et al. Raman spectra of liquid nitromethane under singly shocked conditions [J]. Chinese Journal of Chemical Physics, 2016, 29(2): 161–166. doi: 10.1063/1674-0068/29/cjcp1503037
|
[21] |
谭华. 金属的冲击波温度测量(Ⅰ)—高温计的标定和界面温度的确定 [J]. 高压物理学报, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003
TAN H. Shock temperature measurements for metal (Ⅰ)—calibration of pyrometers and data reduction for the temperature at the interface [J]. Chinese Journal of High Pressure Physics, 1994, 8(4): 254–263. doi: 10.11858/gywlxb.1994.04.003
|
[22] |
SHEN Y R, KUMAR R S, PRAVICA M, et al. Characteristics of silicone fluid as a pressure transmitting medium in diamond anvil cells [J]. Review of Scientific Instruments, 2004, 75(11): 4450–4454. doi: 10.1063/1.1786355
|
[23] |
GIBBS T R, POPOLATO A. LASL explosive property data [M]. Berkeley: University of California Press, 1980: 141–151.
|
[24] |
MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160
|
[25] |
COPPARI F, LAZICKI A, FRATANDUONO D, et al. New Hugoniot measurements on LiF and diamond from laser-driven compression [C]//Proceedings of the APS Topical Conference on the Shock Compression of Matter, 2015.
|
[26] |
LU J P. Evaluation of the thermochemical code-CHEETAH 2.0 for modelling explosives performance: DSTO-TR-1199 [R]. Aeronautical and Maritime Research Laboratory, 2001: 1−24.
|
[27] |
HOBBS M L, BAER M R. Calibrating the BKW-EOS with a large product species data base and measured C-J properties [C]//Proceedings of the 10th Symposium (International) on Detonation. Boston: Office of Naval Research, 1993: 409−418.
|
[28] |
HENGLEIN F A. Chemical technology [M]. 2nd ed. Oxford: Pergamon Press, 1969: 718−728.
|
[29] |
RAVINDRAN T R, RAJAN R, VENKATESAN V. Review of phase transformations in energetic materials as a function of pressure and temperature [J]. The Journal of Physical Chemistry C, 2019, 123(48): 29067–29085. doi: 10.1021/acs.jpcc.9b04885
|
[30] |
LOBOIKO B G, LUBYATINSKY S N. Reaction zones of detonating solid explosives [J]. Combustion, Explosion, and Shock Waves, 2000, 36(6): 716–733. doi: 10.1023/A:1002898505288
|
[31] |
KARIMI M, OCHS B, LIU Z F, et al. Measurement of methane autoignition delays in carbon dioxide and argon diluents at high pressure conditions [J]. Combustion and Flame, 2019, 204: 304–319. doi: 10.1016/j.combustflame.2019.03.020
|
[32] |
CHEN J N, LI A N, HUANG Z, et al. Numerical study on CO2 non-equilibrium condensation considering shock waves for the potential of flue gas decarbonization [J]. International Communications in Heat and Mass Transfer, 2023, 144: 106749. doi: 10.1016/j.icheatmasstransfer.2023.106749
|
[2] | GAO Linyu, DU Shiyu, CHANG Hui, ZHANG Tuanwei, WANG Zhihua. Strain-rate and temperature dependent compressive deformation behavior of CrCoNiSi0.3 medium-entropy alloy[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251047 |
[3] | LI Mao-Sheng, WANG Zheng-Yan, CHEN Dong-Quan, WANG Xiao-Sha. The Dependence of Constitutive Model on the Density, Temperature, Pressure and Strain Rate[J]. Chinese Journal of High Pressure Physics, 1992, 6(1): 54-57 . doi: 10.11858/gywlxb.1992.01.008 |
[4] | TAN Hua, HAN Jun-Wan, WANG Xiao-Jiang, SU Lin-Xiang, LIU Li, LIU Jiang, CUI Ling. Explosive Shock Synthesis of Wurtzite Type Boron Nitride[J]. Chinese Journal of High Pressure Physics, 1991, 5(4): 241-253 . doi: 10.11858/gywlxb.1991.04.001 |
[5] | DING Feng, HUANG Shi-Hui, JING Fu-Qian, DONG Yu-Bin, LI Ze-Ren. Experimental Studies on the Dynamic Quasi-Isentropic Compression of Oxygen Free-Copper[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 150-156 . doi: 10.11858/gywlxb.1990.02.012 |
[6] | SHEN Zhong-Yi, CHEN Li-Quan, ZHANG Yun, YIN Xiu-Jun, LIU Yong, WANG Chao-Ying, Cros C. Pressure Dependence of Crystallization Temperature of a Silica Contained Oxide Ionic Glass[J]. Chinese Journal of High Pressure Physics, 1990, 4(4): 254-258 . doi: 10.11858/gywlxb.1990.04.003 |
[7] | SUN Feng-Guo, LI Yong. The Calculation of Thermal Expansion Coefficients of Several Alkali Halide Crystals[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 148-151 . doi: 10.11858/gywlxb.1989.02.007 |
[8] | TANG Da-Wei, ZHOU Ben-Lian, HE Guan-Hu. Direct Observation and Mechanism Study of the Dynamic Process of Thermal Expansion[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 107-114 . doi: 10.11858/gywlxb.1989.02.002 |
[9] | HAN Chang-Sheng, JING Fu-Qian, DING Jing, ZHANG Wen-Ping, CHEN Sen-Hua, LU Jing-De. Study on the Phenomena of the Mass Ejection from the Free Surface of Aluminum at Different Dynamic Loading Rates[J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 97-106 . doi: 10.11858/gywlxb.1989.02.001 |
[10] | CHEN Xu, JIN Xiao-Gang, YANG Mu-Song. Experimental Studies of Hugoniot for Powder Mixture of BaCO3 and TiO2 and Shock Wave Synthesis of BaTiO3[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 67-77 . doi: 10.11858/gywlxb.1989.01.009 |
[11] | HAN Chang-Sheng. A Semi-Empirical Equation for Estimating the Micro-Jet Ejection from Shocked Free-Surface[J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234-240 . doi: 10.11858/gywlxb.1989.03.009 |
[12] | XU Ji-An. An Isothermal Equation of State for Solid (Ⅴ)-Equation of state at High Temperature[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 211-217 . doi: 10.11858/gywlxb.1988.03.003 |
[13] | YIN Xiu-Jun, SHEN Zhong-Yi, ZHANG Yun, HONG Jing-Xin. A Measurement of the Curie Temperature in Ferromagnetic Materials[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 259-263 . doi: 10.11858/gywlxb.1988.03.009 |
[14] | ZHOU Ben-Lian. Theoretical and Experimental Studies of the Dynamic Process of Thermal Expansion[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 119-122 . doi: 10.11858/gywlxb.1988.02.004 |
[15] | FENG Jia-Bo, JING Fu-Qian, SU Lin-Xiang, HAN Jun-Wan. Studies of the Explosion Expanding-Fracture Process of a Thin Cylindrical Shell[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 97-103 . doi: 10.11858/gywlxb.1988.02.001 |
[16] | WANG Gui-Chao, YU Quan-You, Lü Xiu-Sheng, WANG Da-Quan. An Instantaneous Optical Pyrometer with Six Channels for the Shock Temperature Measurement in Materials[J]. Chinese Journal of High Pressure Physics, 1988, 2(3): 277-284 . doi: 10.11858/gywlxb.1988.03.012 |
[17] | SHEN Zhu-Tong, SUN Guo-Xian, CHI Yong-Qian, LI De-Zhen. Investigations on the Problem of Interface Binding in the Sintering System of Diamond at High Pressure and a New Type Polycrystalline Diamond[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 104-112 . doi: 10.11858/gywlxb.1988.02.002 |
[18] | LIN Qi-Wen, YUAN Wan-Zong, WANG Wei-Jun. Investigation on the Match of Ferroelectric Explosive-Electric Transducers[J]. Chinese Journal of High Pressure Physics, 1988, 2(2): 137-145 . doi: 10.11858/gywlxb.1988.02.007 |
[19] | WANG Gui-Chao, XIE Pan-Hai, TAN Zhen-Nan. Badiometric Measurements of Overtaking Rarefaction Wave Velocities in Shock-Loaded Brass under High Pressures[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 144-149 . doi: 10.11858/gywlxb.1987.02.007 |
[20] | WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003 |