Loading [MathJax]/jax/output/SVG/jax.js
ZHOU Jiahua, YANG Qiang, HAN Zhijun, LU Guoyun. Dynamic Buckling of Functionally Graded Cylindrical Shells under Axial Loading[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054102. doi: 10.11858/gywlxb.20180502
Citation: CHEN Sen, HOU Qiyue, WANG Qiannan, LI Jiangtao, LYU Chao, ZHANG Bingbing, XIE Honglan, LI Ke, WANG Jun, HU Jianbo. Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050104. doi: 10.11858/gywlxb.20230747

Progress on Synchrotron Based in-Situ Dynamic X-Ray Diagnostics and Its Applications

doi: 10.11858/gywlxb.20230747
  • Received Date: 28 Sep 2023
  • Rev Recd Date: 05 Oct 2023
  • Available Online: 30 Oct 2023
  • Issue Publish Date: 07 Nov 2023
  • The dynamic behavior of materials at mesoscales under intense dynamic shock loading has always been the research focus of dynamic compression science. Unfortunately, for a long time, due to the lack of in-situ dynamic multi-scale diagnostics, the progress has been slow. The emergence of advanced X-ray light sources typified by synchrotron radiation provides revolutionary opportunities and challenges for this problem. Significant breakthroughs have been made recently in terms of dynamic plastic deformation, damage failure, solid-solid and solid-liquid phase transitions of materials under shock loading. This paper focuses on the research progress of in-situ dynamic diagnostics based on synchrotrons and its applications, and briefly introduces the characteristics of synchrotron radiation light source, the combination with dynamic loading device, the development of related simulation calculation methods and the application of typical scientific problems from the perspective of physical requirements.

     

  • 功能梯度材料(Functionally Graded Materials, FGM)的概念是1984年在航空飞机计划中首次提出的[1],FGM的特性在于它的组成和结构随着体积的变化而变化,从而导致材料相应性质发生改变。因其材料特性呈幂律分布[2-3],FGM被广泛应用于工程领域,如航空航天、机械工程、生物医学等。圆柱壳在联合荷载作用下的屈曲分析备受学术界关注[4-5]。目前,对FGM板壳的研究较为深入[6-8]。Beni等[9]利用改进的偶应力理论,对FGM圆柱壳在不同边界条件下的动力屈曲进行了分析;Kargarnovin等[10]研究了轴向荷载作用下FGM圆柱壳的动力屈曲;Sofiyev等[11]研究了横向压力下功能梯度正交各向异性圆柱壳的动力屈曲,推导出基于一阶剪切变形理论的功能梯度正交各向异性圆柱壳的稳定性和相容性方程;Khazaeinejad等[12]研究了弹性模量在厚度方向上连续变化的FGM圆柱壳在复合外压和轴向压缩载荷作用下的动力屈曲;Khalili等[13]研究了横向冲击载荷作用下FGM圆柱壳的动力屈曲;Alashti等[14]对变厚度FGM圆柱壳外压和轴向压缩的动力屈曲问题进行了分析。

    基于以上研究,本研究讨论了FGM圆柱壳在轴向荷载作用下的动力屈曲。根据Donnell壳体理论和经典板壳理论,利用Hamilton变分原理得到FGM圆柱壳的动力屈曲控制方程;采用分离变量法求得动力屈曲临界荷载表达式;通过MATLAB软件计算动力屈曲临界荷载,讨论由不同材料(陶瓷和钛、陶瓷和铁、陶瓷和铜)组成的FGM圆柱壳的径厚比(R/h)、梯度指数(k)、环向模态数(m)、轴向模态数(n)等对临界荷载的影响。

    图 1所示,FGM圆柱壳长度为l,半径为R,总厚度为h,选取柱坐标系(x, θ, z),其相应位移为(u, v, w)。FGM的材料属性(弹性模量E、密度ρ、泊松比μ等)呈幂律分布[2-3],表示为

    P(z)=(P1P2)(2z+h2h)k+P2 (1)
    图  1  圆柱壳坐标系统
    Figure  1.  Cylindrical shell coordinates

    式中:P为物性参数,下标“1”和“2”分别代表组分1和组分2;k为梯度指数,k∈(0, ∞)。圆柱壳内任意点的物性参数为

    {E(z)=(E1E2)(2z+h2h)k+E2ρ(z)=(ρ1ρ2)(2z+h2h)k+ρ2μ(z)=(μ1μ2)(2z+h2h)k+μ2 (2)

    根据Donnell壳体理论,圆柱壳的小挠度几何方程为

    {εx=ε0x+zKxεθ=ε0θ+zKθγxθ=γ0xθ+zKxθ,{u=u0zwxv=v0zwRθw=w0,{ε0x=u0xε0θ=v0Rθw0Rγ0xθ=u0Rθv0x,{Kx=2w0x2Kθ=2w0R2θ2Kxθ=22w0Rxθ (3)

    式中:ε为正应变,γ为切应变,上、下标“0”表示壳体中面,K为壳体曲率。

    根据经典板壳理论,FGM圆柱壳的内力N与内力矩M可表示为

    (NxNθNxθMxMθMxθ)=(A11A12A16B11B12B16A21A22A26B21B22B26A16A26A66B16B26B66B11B12B16D11D12D16B21B22B26D21D22D26B16B26B66D16D26D66)(ε0xε0θγ0xθKxKθKxθ) (4)

    式中:AijBijDij(i, j=1, 2, 6)分别为FGM圆柱壳的拉伸刚度、耦合刚度和弯曲刚度系数矩阵分量。A11=A22=h/2h/2E(z)1μ2(z)dz, A12=A21=h/2h/2μ(z)E(z)1μ2(z)dz, A66=h/2h/2E(z)2[1+μ(z)]dz, B11=B22=h/2h/2E(z)1μ2(z)zdz, B12=B21=h/2h/2μ(z)E(z)1μ2(z)zdz, B66=h/2h/2E(z)2[1+μ(z)]zdz, D11=D22=h/2h/2E(z)1μ2(z)z2dz, D12=D21=h/2h/2μ(z)E(z)1μ2(z)z2dz, D66=h/2h/2E(z)2[1+μ(z)]z2dz。FGM圆柱壳的力学性能为各向同性[15],那么:A16=A26=B16=B26=D16=D26=0。

    对于圆柱壳,系统的应变能(不考虑剪力)为

    U=122π0l0(Nxε0x+Nθε0θ+Nxθγ0xθ+MxKx+MθKθ+MxθKxθ)Rdxdθ (5)

    动能为

    T=12h/2h/22π0l0ρ(z)[(ut)2+(vt)2+(wt)2]Rdxdθdz (6)

    外力功为

    W=122π0l0N(t)(w0x)2Rdxdθ (7)

    Hamilton变分原理为

    δt1t2(TU+W)dt=0 (8)

    将(3)式~(7)式代入(8)式中,由Donnell壳体理论可知,圆柱壳内力沿环向均匀分布,忽略中面位移[16],由u0v0w0的变分系数为零,整理得到FGM圆柱壳的动力屈曲控制方程为

    4I02w0tI2(4w0R2θ2t2+4w0x2t2)=4A22w0R24B12R22w0x24B22R2w0R2θ2D114w0x42(D12+2D66)4w0R2x2θ2D224w0R4θ4+N(t)2w0x2 (9)

    设径向位移表示为[17]

    w=Y(x)T(t)eimθ (10)

    将(10)式代入(9)式中,分离变量得

    {Y(4)=α2Y+β2Y=0¨TλT=0 (11)

    其中

    α2=1D11[4B12R2+2R2(D12+2D66)m2N(t)I2λ] (12)
    β2=1D11[4A22R2+4B22R3+D22R4m4+4I0λI2R2m2λ] (13)

    α4>4β2>0且λ>0时,圆柱壳屈曲[18-20],其动力屈曲解为

    Y(x)=C1sin(k1x)+C2cos(k1x)+C3sin(k2x)+C4cos(k2x) (14)

    式中:C1~C4为系数,k1=α2α44β22,k2=α2+α44β22

    (14)式满足下列两种边界条件:

    (1) 对于一端夹支另一端固支的圆柱壳,其边界条件为

    {Y(0)=Y(0)=0Y(l)=Y(l)=0 (15)

    (2) 对于一端简支另一端固支的圆柱壳,其边界条件为

    {Y(0)=Y(0)=0Y(l)=Y(l)=0 (16)

    将(14)式代入(15)式中,整理得到如下齐次线性方程组

    (0101k10k20sin(k1l)cos(k1l)sin(k2l)cos(k2l)k1cos(k1l)k1sin(k1l)k2cos(k2l)k2sin(k2l))(C1C2C3C4)=0 (17)

    若要(17)式有非平凡解,其系数行列式必为零,于是

    2k1k22k1k2cos(k1l)cos(k2l)(k21+k22)sin(k1l)sin(k2l)=0 (18)

    k1k2可得

    {k21+k22=(n21+n22)π2/l2=α2k21k22=n21n22π4/l4=β2 (19)

    将(19)式代入(12)式和(13)式中,得一端夹支另一端固支时FGM圆柱壳动力屈曲临界荷载Ncr,即

    Ncr=D11π2(n21+n22)l2B12R2+2(D12+2D66)m2R2+h2(D11n21n22π4R4A22l4R2+4B22m2R2l4D22l4m4)l4R2(h2m212R2) (20)

    式中:n1=n=1, 2, 3, …;m=1, 2, 3, …;n2=n+2。

    同理可得一端简支另一端固支时FGM圆柱壳动力屈曲临界荷载

    Ncr=D11π2(n21+n22)l2B12R2+2(D12+2D66)m2R2+h2(D11n21n22π4R4A22l4R2+4B22m2R2l4D22l4m4)l4R2(h2m212R2) (21)

    此时,n1=n=1, 2, 3, …;m=1, 2, 3, …;n2=n+1。

    将FGM退化成金属材料,得到金属材料圆柱壳动力屈曲临界荷载

    Ncr=D11π2(n21+n22)l2+2D12m2R2+h2(D11n21n22π4R4A22l4R2D22l4m4)l4R2(h2m212R2) (22)

    (22)式与文献[16]中的表达式相同。

    根据(10)式,取一端夹支另一端固支时圆柱壳动力屈曲解的表达式[16]

    w=T(t)[sin(n1πxl)n1n2sin(n2πxl)]sin(mθ) (23)

    将(23)式代入控制方程(9)式中,计算并化简整理得到临界荷载表达式

    Ncr=(n21+n22)D11π2l2+2m2(D12+2D66)R2 (24)

    (24)式与不考虑转动惯量时用分离变量得到的结果相同,此时n1=n=1, 2, 3, …; m=1, 2, 3, …; n2=n+2。同理可得当边界条件为一端简支另一端固支时的临界荷载表达式,与(24)式相同,此时n1=n=1, 2, 3, …; m=1, 2, 3, …; n2=n+1。

    采用MATLAB软件编程,对FGM圆柱壳动力屈曲临界荷载进行计算。讨论由不同材料(陶瓷-钛、陶瓷-铁、陶瓷-铜)组成的FGM圆柱壳(见图 2)的径厚比(R/h)、梯度指数(k)、环向模态数(m)、轴向模态数(n)对临界荷载Ncr的影响。基本材料参数如表 1所示。

    图  2  材料沿壁厚分布
    Figure  2.  Distribution of material along wall thickness
    表  1  材料参数
    Table  1.  Material parameters
    Material E/GPa ρ/(g·cm-3) μ
    Ceramic 385 3.96 0.230
    Ti 109 4.54 0.410
    Fe 155 7.86 0.291
    Cu 119 8.96 0.326
    下载: 导出CSV 
    | 显示表格

    图 3表示n=1、m=2、k=1、R/h=20时,不同材料组成下Ncr与临界长度l(本研究中临界长度即为圆柱壳长度)的关系曲线。从图 3可以看出:Ncrl的增加而减小;当l<0.5 m时,Ncrl的增加而迅速减小;当l>0.5 m时,Ncrl的增大缓慢减小,且逐渐趋于常数;同一l下,陶瓷-铜的Ncr最大,陶瓷-铁次之,陶瓷-钛的Ncr最小。以下均以陶瓷-钛为例进行讨论。

    图  3  不同材料组成下临界荷载与临界长度的关系
    Figure  3.  Critical load vs.critical length under different material composition conditions

    图 4图 5分别表示冲击端为夹支和简支时n=1、m=2、k=1时不同R/hNcrl的关系曲线。可以看出:当l增加时,Ncr减小,且逐渐趋于常数;在同一l下圆柱壳的Ncr随着R/h的增大而减小;当R/hl一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,说明约束条件对Ncr有较大影响。

    图  4  冲击端为夹支时不同径厚比下临界荷载与临界长度的关系
    Figure  4.  Critical load vs.critical length under clamped edge and different diameter-thickness ratios conditions
    图  5  冲击端为简支时不同径厚比下临界荷载与临界长度的关系
    Figure  5.  Critical load vs.critical length under simple support and different diameter-thickness ratios conditions

    图 6图 7分别表示冲击端为夹支和简支条件下n=1、m=2、R/h=20时不同kNcrl的关系曲线。可见:FGM圆柱壳的Ncr随着l的增加而减小;在同一l下,FGM圆柱壳的Ncr随着k的增加而增加;当l<0.5 m时,Ncrl的增加迅速减小,当l>0.5 m时,Ncrl的增加缓慢减小并逐渐趋于常数;当k=1且l一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,再次说明约束条件对Ncr的影响较大。

    图  6  冲击端为夹支时不同梯度指数下临界荷载与临界长度的关系
    Figure  6.  Critical load vs.critical length under clamped edge and different gradient indexes conditions
    图  7  冲击端为简支时不同梯度指数下临界荷载与临界长度的关系
    Figure  7.  Critical load vs.critical length under simple support and different gradient indexes conditions

    图 8图 9分别表示冲击端为夹支和简支,n=1、k=1、R/h=20时不同mNcrl的关系曲线。可以看出:当l在一定范围内时,Ncrl的增加而迅速减小,超出这一范围后Ncrl的增加而缓慢减小且逐渐趋于常数;同一l下,随着m的增大,FGM圆柱壳的Ncr增大,表明Ncr越大,高阶模态越易被激发。当m=6且l一定时,冲击端为夹支时的Ncr明显比冲击端为简支时的Ncr大,表明约束条件对Ncr有较大影响。

    图  8  冲击端为夹支时不同环向模态数下临界荷载与临界长度的关系
    Figure  8.  Critical load vs.critical length under clamped edge and different circumferential modal number conditions
    图  9  冲击端为简支时不同环向模态数下临界荷载与临界长度的关系
    Figure  9.  Critical load vs.critical length under simple support and different circumferential modal number conditions

    图 10图 11分别表示冲击端为夹支和简支,m=1、k=1、R/h=20时不同nNcrl的关系曲线。图 10图 11显示:Ncr随着l的增加而减小;不同n条件下,Ncrl的增加逐渐趋于同一值;当l<1 m时,在同一lNcrn的增加而增加,说明Ncr越大,高阶模态越容易被激发。

    图  10  冲击端为夹支时不同轴向模态数下临界荷载与临界长度的关系
    Figure  10.  Critical load vs.critical length under clamped edge and different axial modal number conditions
    图  11  冲击端为简支时不同轴向模态数下临界荷载与临界长度的关系
    Figure  11.  Critical load vs.critical length under simple support and different axial modal number conditions

    图 12为不同环向模态数m下FGM圆柱壳的动力屈曲模态。可以看出:随着m的增大,圆柱壳的模态变得越来越复杂,俯视图由单一形变为多瓣形;当m=6时,俯视图为12瓣形。

    图  12  不同环向屈曲模态图(n=1;m=1, 2, 3, 4, 5, 6)
    Figure  12.  Different circumferential buckling modes (n=1;m=1, 2, 3, 4, 5, 6)

    图 13为不同轴向模态数n下FGM圆柱壳的动力屈曲模态图。由图 13可知:随着n的增加,模态图变得越来越复杂。由FGM圆柱壳的俯视图可知,各阶模态数下动力屈曲模态图为轴对称。

    图  13  不同轴向屈曲模态图(m=2;n=1, 2, 3, 4, 5, 6)
    Figure  13.  Different axial buckling modes (m=2;n=1, 2, 3, 4, 5, 6)

    (1) 根据Donnell壳体理论和经典板壳理论,由Hamilton变分原理得到轴向荷载作用下FGM圆柱壳的动力屈曲控制方程。

    (2) 由圆柱壳周向连续性设出径向位移的周向形式,并用分离变量法得到不同约束条件下FGM圆柱壳动力屈曲临界荷载的表达式和屈曲解式。

    (3) 利用MATLAB对临界荷载进行计算,得到:在轴向模态数(n)、环向模态数(m)、梯度指数(k)、径厚比(R/h)一定的情况下,同种材料组成的圆柱壳的临界荷载随着临界长度的增加而减小;在nmkl一定的情况下,临界荷载随着径厚比的增大而减小;在nmR/hl一定的情况下,临界荷载随着梯度指数k的增加而增加;不同约束条件下,冲击端为夹支的临界荷载大于冲击端为简支的临界荷载,表明约束条件对临界荷载有较大影响;圆柱壳的临界荷载随模态数的增加而增大,表明临界荷载越大,越容易激发高阶模态;圆柱壳的动力屈曲模态随模态数的增加变得更为复杂。

  • [1]
    MEYERS M A. Dynamic behavior of materials [M]. New York, USA: Wiley Press, 1994.
    [2]
    HWU Y, MARGARITONDO G. Synchrotron radiation and X-ray free-electron lasers (X-FELs) explained to all users, active and potential [J]. Journal of Synchrotron Radiation, 2021, 28: 1014–1029. doi: 10.1107/S1600577521003325
    [3]
    CAPATINA D, D’AMICO K, NUDELL J, et al. DCS: a high flux beamline for time resolved dynamic compression science-design highlights [C]. AIP Conference Proceedings, 2016, 1741: 030036.
    [4]
    TAKAGI S, ICHIYANAGI K, KYONO A, et al. Development of shock-dynamics study with synchrotron-based time-resolved X-ray diffraction using an Nd: glass laser system [J]. Journal of Synchrotron Radiation, 2019, 27: 371–377.
    [5]
    BHARTI A, GOYAL N. Fundamental of synchrotron radiations [M]. London, UK: IntechOpen, 2019: 3.
    [6]
    MOBILIO S, BOSCHERINI F, MENEGHINI C. Synchrotron radiation: basics, methods and applications [M]. Berlin: Springer, 2015.
    [7]
    BIZEK H. The advanced photon source list of parameters: ANL/APS/TB-26 [R]. Argonne: Argonne National Laboratory, 1996.
    [8]
    HETTEL R O. Status of the APS-U project [C]//12th International Particle Accelerator Conference. Campinas, 2021.
    [9]
    RAIMONDI P, BENABDERRAHMANE C, BERKVENS P, et al. The extremely brilliant source storage ring of the european synchrotron radiation facility [J]. Communications Physics, 2023, 6: 82. doi: 10.1038/s42005-023-01195-z
    [10]
    CAMMARATA M, EYBERT L, EWALD F, et al. Chopper system for time resolved experiments with synchrotron radiation [J]. Review of Scientific Instruments, 2009, 80(1): 015101. doi: 10.1063/1.3036983
    [11]
    EINFELD D. EBS storage ring technical design report [R]. Grénoble, France: European Synchrotron Radiation Facility, 2018.
    [12]
    陈森. 基于先进光源的超快X射线散衍射诊断方法研究 [D]. 绵阳: 中国工程物理研究院, 2020.

    CHEN S. Ultra-fast X-ray diffraction/scattering diagnostics with advanced light source [D]. Mianyang: China Academy of Engineering Physics, 2020.
    [13]
    WILLMOTT P. An introduction to synchrotron radiation: techniques and applications [M]. Chichester: Wiley Press, 2011.
    [14]
    TANAKA T, KITAMURA H. SPECTRA: a synchrotron radiation calculation code [J]. Journal of Synchrotron Radiation, 2001, 8(6): 1221−1228.
    [15]
    TANAKA T. Major upgrade of the synchrotron radiation calculation code SPECTRA [J]. Journal of Synchrotron Radiation, 2021, 28(4): 1267−1272.
    [16]
    孙小沛, 祝万钱, 徐中民, 等. 上海光源时间分辨超小角散射线多层膜单色器的设计 [J]. 核技术, 2019, 42(11): 110101.

    SUN X P, ZHU W Q, XU Z M, et al. Design of a cryo-cooled double multilayer monochromator in USAXS beamline at SSRF [J]. Nuclear Techniques, 2019, 42(11): 110101.
    [17]
    JIANG Z, WANG E Y, SONG R Q, et al. Optimization of a double crystal monochromator [J]. Journal of the Korean Physical Society, 2021, 79(8): 697–705. doi: 10.1007/s40042-021-00294-w
    [18]
    KOYAMA T, SENBA Y, YAMAZAKI H, et al. Double-multilayer monochromators for high-energy and large-field X-ray imaging applications with intense pink beams at SPring-8 BL20B2 [J]. Journal of Synchrotron Radiation, 2022, 29(5): 1265−1272.
    [19]
    SEREBRENNIKOV D A, DIKAYA O A, MAKSIMOVA K Y, et al. Development of a broadband double monochromator based on multilayer supermirrors for hard X-ray spectroscopy on high-intensity beams [J]. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques, 2019, 13(6): 1209−1216.
    [20]
    张帅, 侯溪. K-B镜面形高精度检测技术研究进展 [J]. 中国光学, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231

    ZHANG S, HOU X. Research progress of high-precision surface metrology of a K-B mirror [J]. Chinese Optics, 2020, 13(4): 660–675. doi: 10.37188/CO.2019-0231
    [21]
    CHEN S J, PERNG S Y, TSENG P C, et al. K-B microfocusing system using monolithic flexure-hinge mirrors for synchrotron X-rays [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2001, 467/468: 283–286.
    [22]
    GONG X P, LU Q P, SONG Y. Mechanical design and performance evaluation of K-B mirror system for the ARPES beamline at SSRF [J]. Precision Engineering, 2016, 46: 166–176. doi: 10.1016/j.precisioneng.2016.04.011
    [23]
    KUJALA N, MARATHE S, SHU D M, et al. Kirkpatrick-Baez mirrors to focus hard X-rays in two dimensions as fabricated, tested and installed at the Advanced Photon Source [J]. Journal of Synchrotron Radiation, 2014, 21(4): 662−668.
    [24]
    SIEWERT F, BUCHHEIM J, GWALT G, et al. On the characterization of a 1 m long, ultra-precise K-B focusing mirror pair for European XFEL by means of slope measuring deflectometry [J]. Review of Scientific Instruments, 2019, 90(2): 021713. doi: 10.1063/1.5065473
    [25]
    KIM J, KIM H Y, PARK J, et al. Focusing X-ray free-electron laser pulses using Kirkpatrick-Baez mirrors at the NCI hutch of the PAL-XFEL [J]. Journal of Synchrotron Radiation, 2018, 25(1): 289−292.
    [26]
    YUMOTO H, KOYAMA T, SUZUKI A, et al. High-fluence and high-gain multilayer focusing optics to enhance spatial resolution in femtosecond X-ray laser imaging [J]. Nature Communications, 2022, 13(1): 5300. doi: 10.1038/s41467-022-33014-4
    [27]
    BEGUIRISTAIN H R, PIESTRUP M A, PANTELL R H, et al. Development of compound refractive lenses for X-rays [J]. AIP Conference Proceedings, 2000, 521(1): 258–266. doi: 10.1063/1.1291797
    [28]
    乐孜纯, 董文, 刘魏, 等. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究 [J]. 物理学报, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977

    LE Z C, DONG W, LIU W, et al. Theoretical and experimental results of focusing performance for the parabolic compound X-ray refractive lenses [J]. Acta Physica Sinica, 2010, 59(3): 1977–1984. doi: 10.7498/aps.59.1977
    [29]
    SIMONS H, AHL S R, POULSEN H F, et al. Simulating and optimizing compound refractive lens-based X-ray microscopes [J]. Journal of Synchrotron Radiation, 2017, 24(2): 392−401.
    [30]
    WANG X M, RIGG P, SETHIAN J, et al. The laser shock station in the dynamic compression sector [J]. Review of Scientific Instruments, 2019, 90(5): 053901. doi: 10.1063/1.5088367
    [31]
    CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
    [32]
    LUO S N, JENSEN B J, HOOKS D E, et al. Gas gun shock experiments with single-pulse X-ray phase contrast imaging and diffraction at the Advanced Photon Source [J]. Review of Scientific Instruments, 2012, 83(7): 073903. doi: 10.1063/1.4733704
    [33]
    FAN D, HUANG J W, ZENG X L, et al. Simultaneous, single-pulse, synchrotron X-ray imaging and diffraction under gas gun loading [J]. Review of Scientific Instruments, 2016, 87(5): 053903. doi: 10.1063/1.4950869
    [34]
    KASHKAROV A O, PRUUEL E R, TEN K A, et al. Measurements of detonation propagation in the plastic explosive in charges of small diameters using synchrotron radiation [J]. Journal of Physics: Conference Series, 2017, 899(4): 042004. doi: 10.1088/1742-6596/899/4/042004
    [35]
    LI Y X, HUANG J W, FAN D, et al. Deformation twinning in single-crystal Mg under high strain rate tensile loading: a time-resolved X-ray diffraction study [J]. International Journal of Mechanical Sciences, 2022, 220: 107106. doi: 10.1016/j.ijmecsci.2022.107106
    [36]
    PARAB N D, ROBERTS Z A, HARR M H, et al. High speed X-ray phase contrast imaging of energetic composites under dynamic compression [J]. Applied Physical Letters, 2016, 109(13): 131903. doi: 10.1063/1.4963137
    [37]
    王桂吉, 罗斌强, 陈学秒, 等. 磁驱动平面准等熵加载装置、实验技术及应用研究新进展 [J]. 爆炸与冲击, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119

    WANG G J, LUO B Q, CHEN X M, et al. Recent progress on the experimental facilities, techniques and applications of magnetically driven quasi-isentropic compression [J]. Explosion and Shock Waves, 2021, 41(12): 121403. doi: 10.11883/bzycj-2021-0119
    [38]
    SÉVELIN-RADIGUET N, TORCHIO R, BERRUYER G, et al. Towards a dynamic compression facility at the ESRF [J]. Journal of Synchrotron Radiation, 2022, 29(1): 167−179.
    [39]
    OLBINADO M P, JUST X, GELET J L, et al. MHz frame rate hard X-ray phase-contrast imaging using synchrotron radiation [J]. Optics Express, 2017, 25(12): 13857–13871. doi: 10.1364/OE.25.013857
    [40]
    CERANTOLA V, ROSA A D, KONÔPKOVÁ Z, et al. New frontiers in extreme conditions science at synchrotrons and free electron lasers [J]. Journal of Physics: Condensed Matter, 2021, 33(27): 274003. doi: 10.1088/1361-648X/abfd50
    [41]
    JAKKULA P, COHEN A, LUKIĆ B, et al. Split Hopkinson tension bar and universal testing machine for high-speed X-ray imaging of materials under tension [J]. Instruments, 2022, 6(3): 38. doi: 10.3390/instruments6030038
    [42]
    SCHROER C G, AGAPOV I, BREFELD W, et al. PETRA Ⅳ: the ultralow-emittance source project at DESY [J]. Journal of Synchrotron Radiation, 2018, 25(5): 1277−1290.
    [43]
    SUN T, FEZZAA K. HiSPoD: a program for high-speed polychromatic X-ray diffraction experiments and data analysis on polycrystalline samples [J]. Journal of Synchrotron Radiation, 2016, 23(4): 1046–1053.
    [44]
    CHEN S, E J C, LUO S N. SLADS: a parallel code for direct simulations of scattering of large anisotropic dense nanoparticle systems [J]. Journal of Applied Crystallography, 2017, 50(3): 951–958. doi: 10.1107/S1600576717004162
    [45]
    FORTMANN-GROTE C, ANDREEV A A, BRIGGS R, et al. SIMEX: simulation of experiments at advanced light sources [R]. arXiv preprint arXiv: 1610.05980, 2016.
    [46]
    SÁNCHEZ DEL RÍO M, DEJUS R J. XOP v2.4: recent developments of the X-ray optics software toolkit [C]//Proceedings of the SPIE 8141, Advances in Computational Methods for X-Ray Optics Ⅱ. San Diego: SPIE, 2011: 814115.
    [47]
    SÁNCHEZ DEL RÍO M, DEJUS R J. XOP 2.1: a new version of the X-ray optics software toolkit [J]. AIP Conference Proceedings, 2004, 705(1): 784–787. doi: 10.1063/1.1757913
    [48]
    KLEMENTIEV K, CHERNIKOV R. Powerful scriptable ray tracing package xrt [C]//Proceedings of the SPIE 9209, Advances in Computational Methods for X-Ray Optics Ⅲ. San Diego: SPIE, 2014: 92090A.
    [49]
    SANCHEZ DEL RIO M, CANESTRARI N, JIANG F, et al. SHADOW3: a new version of the synchrotron X-ray optics modelling package [J]. Journal of Synchrotron Radiation, 2011, 18(5): 708−716.
    [50]
    REBUFFI L, SÁNCHEZ DEL RÍO M. ShadowOui: a new visual environment for X-ray optics and synchrotron beamline simulations [J]. Journal of Synchrotron Radiation, 2016, 23(6): 1357−1367.
    [51]
    LAI B, CERRINA F. SHADOW: a synchrotron radiation ray tracing program [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1986, 246(1): 337−341.
    [52]
    WELNAK C, CHEN G J, CERRINA F. SHADOW: A synchrotron radiation and X-ray optics simulation tool [J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1994, 347(1): 344−347.
    [53]
    REBUFFI L, SANCHEZ DEL RIO M. OASYS (OrAnge SYnchrotron Suite): an open-source graphical environment for X-ray virtual experiments [C]//Proceedings of the SPIE 10388, Advances in Computational Methods for X-Ray Optics Ⅳ. San Diego: SPIE, 2017: 103880S.
    [54]
    CHUBAR O, ELLEAUME P. Accurate and efficient computation of synchrotron radiation in the near field region [C]//Proceedings of the 6th European Particle Accelerator Conference. Stockholm, 1998: 1177−1179.
    [55]
    NASH B, CHUBAR O, GOLDRING N, et al. Detailed X-ray brightness calculations in the sirepo GUI for SRW [J]. AIP Conference Proceedings, 2019, 2054(1): 060080. doi: 10.1063/1.5084711
    [56]
    HUANG X R. LauePt, a graphical-user-interface program for simulating and analyzing white-beam X-ray diffraction Laue patterns [J]. Journal of Applied Crystallography, 2010, 43(4): 926–928. doi: 10.1107/S0021889810015013
    [57]
    HUANG V W, LIU Y, RAGHOTHAMACHAR B, et al. Upgraded LauePt4 for rapid recognition and fitting of Laue patterns from crystals with unknown orientations [J]. Journal of Applied Crystallography, 2023, 56(5): 1610−1615.
    [58]
    E J C, WANG L, CHEN S, et al. GAPD: a GPU-accelerated atom-based polychromatic diffraction simulation code [J]. Journal of Synchrotron Radiation, 2018, 25(2): 604-611.
    [59]
    Debyer [EB/OL]. [2023-09-28].https://debyer.readthedocs.io/en/latest/#.
    [60]
    COLEMAN S P, SPEAROT D E, CAPOLUNGO L. Virtual diffraction analysis of Ni [010] symmetric tilt grain boundaries [J].Modelling and Simulation in Materials Science and Engineering, 2013, 21(5): 055020. doi: 10.1088/0965-0393/21/5/055020
    [61]
    TOME C, CANOVA G R, KOCKS U F, et al. The relation between macroscopic and microscopic strain hardening in fcc polycrystals [J]. Acta Metallurgica, 1984, 32(10): 1637–1653. doi: 10.1016/0001-6160(84)90222-0
    [62]
    MISHRA A, KUNKA C, ECHEVERRIA M J, et al. Fingerprinting shock-induced deformations via diffraction [J]. Scientific Reports, 2021, 11(1): 9872. doi: 10.1038/s41598-021-88908-y
    [63]
    CHEN S, CHAI H W, HE A M, et al. Resolving dynamic fragmentation of liquids at the nanoscale with ultrafast small-angle X-ray scattering [J]. Journal of Synchrotron Radiation, 2019, 26(5): 1412–1421.
    [64]
    ZHANG Y Y, TANG M X, CAI Y, et al. Deducing density and strength of nanocrystalline Ta and diamond under extreme conditions from X-ray diffraction [J]. Journal of Synchrotron Radiation, 2019, 26(2): 413−421.
    [65]
    LUTTEROTTI L, MATTHIES S, WENK H R. MAUD: a friendly Java program for material analysis using diffraction [J].IUCr: Newsletter of the CPD, 1999, 21: 14–15.
    [66]
    TOBY B H, VON DREELE R B. GSAS-Ⅱ : the genesis of a modern open-source all purpose crystallography software package [J].Journal of Applied Crystallography, 2013, 46(2): 544–549. doi: 10.1107/S0021889813003531
    [67]
    BACHMANN F, HIELSCHER R, SCHAEBEN H. Texture analysis with MTEX-free and open source software toolbox [J]. Solid State Phenomena, 2010, 160: 63–68. doi: 10.4028/www.scientific.net/SSP.160.63
    [68]
    GAO J L, KEDIR N, KIRK C D, et al. High-speed synchrotron X-ray phase-contrast imaging for evaluating microscale damage mechanisms and tracking cracking behaviors inside cross-ply GFRCs [J]. Composites Science and Technology, 2021, 210: 108814. doi: 10.1016/j.compscitech.2021.108814
    [69]
    GAO J L, FEZZAA K, CHEN W N. Multiscale dynamic experiments on fiber-reinforced composites with damage assessment using high-speed synchrotron X-ray phase-contrast imaging [J]. NDT & E International, 2022, 129: 102636. doi: 10.1016/j.ndteint.2022.102636
    [70]
    COHEN A, LEVI-HEVRONI D, FRIDMAN P, et al. In-situ radiography of a split-Hopkinson bar dynamically loaded materials [J]. Journal of Instrumentation, 2019, 14: T06008. doi: 10.1088/1748-0221/14/06/T06008
    [71]
    ZHAI X D, GUO Z R, GAO J L, et al. High-speed X-ray visualization of dynamic crack initiation and propagation in bone [J].Acta Biomaterialia, 2019, 90: 278–286. doi: 10.1016/j.actbio.2019.03.045
    [72]
    JENSEN B J, RAMOS K J, IVERSON A J, et al. Dynamic experiment using IMPULSE at the Advanced Photon Source [J].Journal of Physics: Conference Series, 2014, 500: 042001. doi: 10.1088/1742-6596/500/4/042001
    [73]
    BRANCH B A, SPECHT P E, JENSEN S, et al. Detailed meso-scale simulations of the transient deformation in additively manufactured 316L stainless steel lattices characterized by phase contrast imaging [J]. International Journal of Impact Engineering, 2022, 161: 104112. doi: 10.1016/j.ijimpeng.2021.104112
    [74]
    LIND J, ROBINSON A K, KUMAR M. Insight into the coordinated jetting behavior in periodic lattice structures under dynamic compression [J]. Journal of Applied Physics, 2020, 128(1): 015901. doi: 10.1063/5.0003776
    [75]
    ESCAURIZA E M, DUARTE J P, CHAPMAN D J, et al. Collapse dynamics of spherical cavities in a solid under shock loading [J]. Scientific Reports, 2020, 10(1): 8455. doi: 10.1038/s41598-020-64669-y
    [76]
    BRANCH B A, FRANK G, ABBOTT A, et al. Directional shock diode behavior through the interaction of geometric voids in engineered polymer assemblies [J]. Journal of Applied Physics, 2020, 128(24): 245903. doi: 10.1063/5.0029835
    [77]
    OLLES J D, HUDSPETH M C, TILGER C F, et al. The effect of liquid tamping media on the growth of Richtmyer-Meshkov instability in copper [J]. Journal of Dynamic Behavior of Materials, 2021, 7(2): 338–351. doi: 10.1007/s40870-021-00305-8
    [78]
    OLBINADO M P, CANTELLI V, MATHON O, et al. Ultra high-speed X-ray imaging of laser-driven shock compression using synchrotron light [J]. Journal of Physics D: Applied Physics, 2018, 51(5): 055601. doi: 10.1088/1361-6463/aaa2f2
    [79]
    ZHANG D S, YU C, WANG M, et al. In situ transient Laue X-ray diffraction during high strain-rate tension [J]. Review of Scientific Instruments, 2022, 93(3): 033902. doi: 10.1063/5.0079582
    [80]
    GLEASON A E, BOLME C A, LEE H J, et al. Time-resolved diffraction of shock-released SiO2 and diaplectic glass formation [J]. Nature Communications, 2017, 8: 1481. doi: 10.1038/s41467-017-01791-y
    [81]
    MAGAGNOSC D J, LLOYD J T, MEREDITH C S, et al. Incipient dynamic recrystallization and adiabatic shear bands in Ti-7Al studied via in situ X-ray diffraction [J]. International Journal of Plasticity, 2021, 141: 102992. doi: 10.1016/j.ijplas.2021.102992
    [82]
    TURNEAURE S J, RENGANATHAN P, WINEY J M, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
    [83]
    WILLIAMS C L, KALE C, TURNAGE S A, et al. Real-time observation of twinning-detwinning in shock-compressed magnesium via time-resolved in situ synchrotron XRD experiments [J]. Physical Review Materials, 2020, 4(8): 083603. doi: 10.1103/PhysRevMaterials.4.083603
    [84]
    ZHANG Y Y, XU Y F, FENG Z D, et al. Impact-induced twinning in a magnesium alloy under different stress conditions [J]. Materials Science and Engineering: A, 2021, 818: 141360. doi: 10.1016/j.msea.2021.141360
    [85]
    HUBER R C, WATKINS E B, DATTELBAUM D M, et al. In situ X-ray diffraction of high density polyethylene during dynamic drive: polymer chain compression and decomposition [J]. Journal of Applied Physics, 2021, 130(17): 175901. doi: 10.1063/5.0057439
    [86]
    GANDHI V, RAVINDRAN S, JOSHI A, et al. Real-time characterization of dislocation slip and twinning of shock-compressed molybdenum single crystals [J]. Physical Review Materials, 2023, 7(7): 073601. doi: 10.1103/PhysRevMaterials.7.073601
    [87]
    SHARMA S M, TURNEAURE S J, WINEY J M, et al. Real-time observation of stacking faults in gold shock compressed to 150 GPa [J]. Physical Review X, 2020, 10(1): 011010. doi: 10.1103/PhysRevX.10.011010
    [88]
    COLEMAN A L, SINGH S, VENNARI C E, et al. Quantitative measurements of density in shock-compressed silver up to 330 GPa using X-ray diffraction [J]. Journal of Applied Physics, 2022, 131(1): 015901. doi: 10.1063/5.0072208
    [89]
    D’ALMEIDA T, GUPTA Y M. Real-time X-ray diffraction measurements of the phase transition in KCl shocked along [100] [J].Physical Review Letters, 2000, 85(2): 330–333. doi: 10.1103/PhysRevLett.85.330
    [90]
    ZHANG Y Y, LI Y X, FAN D, et al. Ultrafast X-ray diffraction visualization of B1-B2 phase transition in KCl under shock compression [J]. Physical Review Letters, 2021, 127(4): 045702. doi: 10.1103/PhysRevLett.127.045702
    [91]
    HU J B, ICHIYANAGI K, DOKI T. Complex structural dynamics of bismuth under laser-driven compression [J]. Applied Physics Letters, 2013, 103: 161904.
    [92]
    HU J B, ICHIYANAGI K, TAKAHASHI H, et al. Reversible phase transition in laser-shocked 3Y-TZP ceramics observed via nanosecond time-resolved X-ray diffraction [J]. Journal of Applied Physics, 2012, 111: 053526.
    [93]
    BISHOP S R, LOWRY D R, PERETTI A S, et al. Dynamic high pressure phase transformation of ZrW2O8 [J]. AIP Advances, 2023, 13(6): 065101. doi: 10.1063/5.0147942
    [94]
    KALITA P, SPECHT P E, BROWN J L, et al. Real-time atomic scale kinetics of a dynamic event in a model ionic crystal [J].Minerals, 2023, 13(9): 1226. doi: 10.3390/min13091226
    [95]
    BEASON M T, JENSEN B J, CROCKETT S D. Shock melting and the hcp-bcc phase boundary of Mg under dynamic loading [J].Physical Review B, 2021, 104(14): 144106. doi: 10.1103/PhysRevB.104.144106
    [96]
    BEASON M T, JENSEN B J. Examination of the cerium α- ε phase transition under dynamic loading with X-ray diffraction [J].Physical Review B, 2022, 105(21): 214107. doi: 10.1103/PhysRevB.105.214107
    [97]
    SIMS M, BRIGGS R, VOLZ T J, et al. Experimental and theoretical examination of shock-compressed copper through the fcc to bcc to melt phase transitions [J]. Journal of Applied Physics, 2022, 132(7): 075902. doi: 10.1063/5.0088607
    [98]
    HAWRELIAK J A, TURNEAURE S J. Probing the lattice structure of dynamically compressed and released single crystal iron through the alpha to epsilon phase transition [J]. Journal of Applied Physics, 2021, 129(13): 135901. doi: 10.1063/5.0042605
    [99]
    SINGH S, COLEMAN A L, ZHANG S, et al. Quantitative analysis of diffraction by liquids using a pink-spectrum X-ray source [J]. Journal of Synchrotron Radiation, 2023, 29(4): 1033-1042.
    [100]
    DUWAL S, MCCOY C A, DOLAN Ⅲ D H, et al. Samarium: from a distorted-fcc phase to melting under dynamic compression using in-situ X-ray diffraction [J]. Scientific Reports, 2022, 12(1): 16777. doi: 10.1038/s41598-022-21332-y
    [101]
    BEASON M T, JENSEN B J, BRANCH B. Investigating shock melting of metals through time-resolved X-ray diffraction of cerium [J]. Journal of Applied Physics, 2020, 128(16): 165107. doi: 10.1063/5.0024715
    [102]
    TURNEAURE S J, SHARMA S M, GUPTA Y M. Nanosecond melting and recrystallization in shock-compressed silicon [J].Physical Review Letters, 2018, 121(13): 135701. doi: 10.1103/PhysRevLett.121.135701
    [103]
    RENGANATHAN P, SHARMA S M, TURNEAURE S J, et al. Real-time (nanoseconds) determination of liquid phase growth during shock-induced melting [J]. Science Advances, 2023, 9(8): eade5745. doi: 10.1126/sciadv.ade5745
  • Relative Articles

    [1]Cover[J]. Chinese Journal of High Pressure Physics, 2025, 39(4).
    [2]Contents[J]. Chinese Journal of High Pressure Physics, 2025, 39(2): 1-2.
    [4]Cover[J]. Chinese Journal of High Pressure Physics, 2025, 39(1).
    [6]Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(3): 1-2.
    [8]Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(2): 1-2.
    [9]Contents[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 1-2.
    [12]cover[J]. Chinese Journal of High Pressure Physics, 2022, 36(2).
    [19]2019-02目录[J]. Chinese Journal of High Pressure Physics, 2019, 33(2).
    [20]MENG Chuan-Min, SHI Shang-Chun, HUANG Hai-Jun, JI Guang-Fu, TANG Jing-You, YANG Xiang-Dong. Experimental Measurement for Shock Temperature of Liquid Argon up to 33 GPa[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 296-300 . doi: 10.11858/gywlxb.2006.03.013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(4)

    Article Metrics

    Article views(733) PDF downloads(196) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return