Processing math: 100%
REN Xianda, LIU Jiaqiong, TANG Zhen, WU Xiaogang, CHEN Weiyi. Experimental Analysis of Fatigue Performance in Transmission Lines at Different Annealing Temperatures[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 045902. doi: 10.11858/gywlxb.20180566
Citation: SONG Xianqi, LIU Chang, LIU Zikai, WANG Jianyun, LI Quan. Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050102. doi: 10.11858/gywlxb.20230720

Structural and Electronic Properties of Solid Hydrogen at Non-Hydrostatic Pressures

doi: 10.11858/gywlxb.20230720
  • Received Date: 16 Aug 2023
  • Rev Recd Date: 01 Sep 2023
  • Available Online: 09 Oct 2023
  • Issue Publish Date: 07 Nov 2023
  • The pressure required for the metallization of solid hydrogen exceeds 400 GPa, thereby presenting a formidable challenge for its experimental preparation and characterization. Here, we systematically explore the structures and properties undergone by solid hydrogen under non-hydrostatic pressure conditions by first-principle calculations. Our findings reveal that solid molecular hydrogen can retain good structural stability under non-hydrostatic pressure conditions, which induces symmetry breaking and charge redistribution within the solid hydrogen lattice, facilitating the transformation of solid molecular hydrogen into metallic and superconducting states at lower pressures (e.g., pressures are lower than 300 GPa). This study proposes a new idea of introducing an anisotropic non-hydrostatic pressure environment for achieving metallic hydrogen at lower pressure.

     

  • 冲击波在密实介质中的传播和衰减规律受到从事爆炸和防护等研究人员的高度重视。炸药的冲击波感度是其重要的安全性指标之一。隔板实验是早期建立的用于测定炸药冲击起爆性能的典型方法[1],通过升降法调整隔板厚度研究炸药的临界爆轰阈值。类似的改进的隔板实验(Modified Gap Test,MGT)[2]则用于研究低压作用下炸药的反应阈值和爆轰阈值。可见,隔板实验中,经隔板衰减后的输出压力是一个重要的数据。有机玻璃作为一种常用的衰减材料,其衰减规律受到广泛关注。Keller[3]、陈熙荣等[4]、王作山等[5]、王海福等[6]对密实介质中冲击波的衰减进行了研究,应用不同的方法建立了密实介质中冲击波的衰减模型。韩秀凤等[7]则对雷管输出冲击波在有机玻璃中的衰减进行了实验研究,由研究结果可知,冲击波在密实介质中传播时是按照指数规律衰减的,表达式为

    p=p0eαx
    (1)

    式中:p为冲击波进入密实介质传播距离x处的压力,GPa;p0为冲击波进入密实介质时的初始压力,GPa;α为密实介质中冲击波压力衰减系数;x为冲击波在密实介质中传播的距离,mm。

    由文献可知,由于研究者的实验方法及实验装置不同,其得出的衰减系数具有很大的差别。因此,衰减系数α并不是一成不变的。在一维强冲击波的作用下,α体现了隔板材料的属性,是一定值;而在其他情况,如散心爆轰波、雷管起爆输出冲击波等作用下,由于受到边侧稀疏等影响,其衰减系数将发生较大的变化。

    本工作在研究低压冲击下炸药的反应阈值过程中,采用PVDF压电式压力传感器(简称PVDF计)测量了平面冲击波经过不同厚度有机玻璃隔板衰减后的输出压力,得到平面波透镜作用下有机玻璃隔板中冲击波的衰减系数,并与数值模拟结果及其他研究者的研究结果进行比较。

    实验装置示意见图 1。平面波透镜爆炸后产生平面冲击波,在平面波透镜和有机玻璃界面处产生约10.15 GPa的压力(通过锰铜压力计测定,见图 2),经不同厚度的Ø100 mm有机玻璃隔板衰减后,由PVDF计测量有机玻璃隔板与炸药间的压力-时间(p-t)历程。平面波透镜为RHT-901高爆速炸药和Ba(NO3)2/TNT(78/22, 质量比)的低爆速炸药组成,其中低爆速炸药的密度为2.45 g/cm3。实验用炸药柱为JO-9159,尺寸为Ø40 mm×25 mm,密度为1.842 g/cm3。PVDF计在低压下时间分辨率可达几十纳秒,压力测量精度高,可以得到准确的有机玻璃隔板中冲击波传播的衰减系数。但是,PVDF薄膜安装在被测物体内部或之间,需要涂抹硅胶排除其间的空气,因此,对安装精度的要求较高,胶层及薄膜也可能使测试结果偏小。

    图  1  实验装置示意
    Figure  1.  Sketch of experimental facility
    图  2  界面压力测量结果
    Figure  2.  Interface pressure measured by manganin pressure gauge

    实验测量了冲击波经厚度分别为50、70、80、90和100 mm的有机玻璃隔板衰减后的压力-时间历程,典型的实验波形和相应的压力波形见图 3。压力波形由实验波形结合PVDF计的标定方程得到,标定方程为[8]

    p=110{5.8(QA)+3.8[(QA)]1.6+0.55[(QA)]3.5}
    (2)
    图  3  隔板厚度为100 mm时的电压和压力波形
    Figure  3.  Voltage and pressure waves with 100 mm card gap

    式中:Q为电荷;A为PVDF计的敏感面积;(QA)*=0.018(QA)为归一化电压幅值,它与积分器电容、准静态标定系数、标定时的温度以及积分器和记录器之间的衰减系数等密切相关[9]图 3中实验曲线上的第1个拐点代表隔板输出压力,第2个拐点代表炸药反应后的压力,这里只关注第1个拐点处的压力。不同隔板厚度对应的输出压力见表 1

    表  1  不同隔板厚度输出压力
    Table  1.  Output pressure with different card gap thicknesses
    Card gap thickness/mm Output pressure/GPa
    50 2.24
    70 1.30
    80 1.09
    90 0.82
    100 0.65
    下载: 导出CSV 
    | 显示表格

    采用LS-DYNA软件对平面冲击波加载下有机玻璃的衰减情况进行了二维数值模拟,计算模型如图 4所示。加载炸药取低爆速炸药,采用MAT_HIGH_EXPLOSIVE_BURN材料模型和JWL状态方程,线性起爆产生平面冲击波,主要计算参数见表 2[10];有机玻璃采用MAT_ELASTIC_PLASTIC_ HYDRO材料模型和Grüneisen状态方程,主要计算参数见表 3,其中:D为炸药爆速,pJ为炸药爆压,ab为材料的冲击雨贡纽参数。不同厚度有机玻璃对应的输出压力计算结果见图 5

    图  4  计算模型
    Figure  4.  Calculation model
    表  2  炸药的主要计算参数
    Table  2.  Main computational parameters of explosive
    Material Density/(g·cm-3) D/(km·s-1) pJ/GPa A/GPa B/GPa R1 R2 ω
    Ba(NO3)2/TNT(78/22) 2.6 4.476 11 1 265 1.55 5.8 2.0 0.6
    下载: 导出CSV 
    | 显示表格
    表  3  有机玻璃的主要计算参数
    Table  3.  Main computational parameters of PMMA
    Material Density/(g·cm-3) a/(km·s-1) b
    PMMA 1.186 2.598 1.516
    下载: 导出CSV 
    | 显示表格
    图  5  实验结果与数值模拟结果比较
    Figure  5.  Comparison of experimental and simulated results

    炸药爆轰产物的JWL状态方程[11]

    p=A(1ωR1v)eR1v+B(1ωR2v)eR2v+ωev
    (3)

    式中:e为比内能;v为比容;ABR1R2ω为JWL状态方程参数。

    图 5可知,实验结果和数值模拟结果具有较好的一致性。由此说明实验结果是可靠的,数值模拟采用的计算参数是合理的。采用(1)式对实验结果进行指数拟合,可得平面波透镜作用下有机玻璃的衰减系数为0.028 89。

    将本研究结果与其他研究者的研究结果进行比较,如图 6所示。由图 6曲线可以清晰地看出:本研究的冲击波衰减最慢; 文献[4]中采用Ø40 mm平面波透镜加载时,冲击波的衰减速率与本研究结果比较接近;而文献[7]中采用雷管起爆作为加载方式时,其衰减速率最快。可见,不同实验装置和实验条件下有机玻璃的衰减速率差别很大。实验装置的尺寸越大,加载冲击波的平面性越好,冲击波在有机玻璃中的衰减速率越慢,即衰减系数越小。这主要是由于冲击波在传播过程中受到边侧稀疏波的影响,实验装置尺寸大,则受到的影响小,实验结果能更真实地反映有机玻璃的衰减特性。可见,衰减系数体现了隔板材料的衰减特性,但同时也受到实验装置本身的影响,是特定条件下的参数。在采用有机玻璃或其他物质作为隔板材料时,应根据实际情况选取合适的衰减系数,才能比较准确地得到所需要的压力。本实验结果可为相关平面冲击波加载实验提供参考。

    图  6  有机玻璃中冲击波衰减规律比较
    Figure  6.  Comparison of shock waveattenuation in PMMA

    (1) 采用Ø100 mm平面波透镜加载产生平面冲击波,用PVDF计测得距加载面不同距离处的冲击波压力,得到有机玻璃中冲击波的衰减系数为0.028 89。LS-DYNA模拟结果表明,计算结果与实验结果的一致性较好,说明实验结果可信度较高。

    (2) 衰减系数受到实验装置尺寸大小及实验加载条件的影响,反映了材料在一定条件下的衰减特性。本实验结果受到侧向稀疏波的影响最小,比较真实地反映了有机玻璃的衰减特性。在实验设计时,应尽量减小稀疏波对加载冲击波的影响,以获得准确的实验压力条件。

  • [1]
    WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. The Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [2]
    ASHCROFT N W. Metallic hydrogen: a high-temperature superconductor? [J]. Physical Review Letters, 1968, 21(26): 1748–1749. doi: 10.1103/PhysRevLett.21.1748
    [3]
    BALL P. Metallic hydrogen in the spotlight [J]. Nature Materials, 2017, 16(3): 288. doi: 10.1038/nmat4872
    [4]
    DIAS R P, SILVERA I F. Observation of the Wigner-Huntington transition to metallic hydrogen [J]. Science, 2017, 355(6326): 715–718. doi: 10.1126/science.aal1579
    [5]
    EREMETS M I, DROZDOV A P, KONG P P, et al. Semimetallic molecular hydrogen at pressure above 350 GPa [J]. Nature Physics, 2019, 15(12): 1246–1249. doi: 10.1038/s41567-019-0646-x
    [6]
    LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [7]
    MONACELLI L, ERREA I, CALANDRA M, et al. Black metal hydrogen above 360 GPa driven by proton quantum fluctuations [J]. Nature Physics, 2021, 17(1): 63–67. doi: 10.1038/s41567-020-1009-3
    [8]
    SONG X Q, LIU C, LI Q, et al. Stress-induced high- Tc superconductivity in solid molecular hydrogen [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(26): e2122691119. doi: 10.1073/PNAS.2122691119
    [9]
    ZHANG L J, WANG Y C, LV J, et al. Materials discovery at high pressures [J]. Nature Reviews Materials, 2017, 2(4): 17005. doi: 10.1038/natrevmats.2017.5
    [10]
    李全, 马琰铭. 典型双原子分子晶体的高压解离和单原子相[J]. 高压物理学报, 2013, 27(3): 313–324. doi: 10.11858/gywlxb.2013.03.001

    LI Q, MA Y M. High pressure dissociation of typical diatomic molecular solids and their atomic phases [J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 313–324. doi: 10.11858/gywlxb.2013.03.001
    [11]
    DALLADAY-SIMPSON P, BINNS J, PEÑA-ALVAREZ M, et al. Band gap closure, incommensurability and molecular dissociation of dense chlorine [J]. Nature Communications, 2019, 10(1): 1134. doi: 10.1038/s41467-019-09108-x
    [12]
    EREMETS M I, GAVRILIUK A G, TROJAN I A, et al. Single-bonded cubic form of nitrogen [J]. Nature Materials, 2004, 3(8): 558–563. doi: 10.1038/nmat1146
    [13]
    WANG X L, WANG Y C, MIAO M S, et al. Cagelike diamondoid nitrogen at high pressures [J]. Physical Review Letters, 2012, 109(17): 175502. doi: 10.1103/PhysRevLett.109.175502
    [14]
    JI C, ADELEKE A A, YANG L X, et al. Nitrogen in black phosphorus structure [J]. Science Advances, 2020, 6(23): eaba9206. doi: 10.1126/sciadv.aba9206
    [15]
    DUAN D F, LIU Z T, LIN Z Y, et al. Multistep dissociation of fluorine molecules under extreme compression [J]. Physical Review Letters, 2021, 126(22): 225704. doi: 10.1103/PhysRevLett.126.225704
    [16]
    BARDEEN J, COOPER L N, SCHRIEFFER J R. Microscopic theory of superconductivity [J]. Physical Review, 1957, 106(1): 162–164. doi: 10.1103/PhysRev.106.162
    [17]
    BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175
    [18]
    PICKARD C J, NEEDS R J. Structure of phase Ⅲ of solid hydrogen [J]. Nature Physics, 2007, 3(7): 473–476. doi: 10.1038/nphys625
    [19]
    PICKARD C J, MARTINEZ-CANALES M, NEEDS R J. Density functional theory study of phase Ⅳ of solid hydrogen [J]. Physical Review B, 2012, 85(21): 214114. doi: 10.1103/PhysRevB.85.214114
    [20]
    MCMINIS J, CLAY III R C, LEE D, et al. Molecular to atomic phase transition in hydrogen under high pressure [J]. Physical Review Letters, 2015, 114(10): 105305. doi: 10.1103/PhysRevLett.114.105305
    [21]
    DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
    [22]
    MONSERRAT B, DRUMMOND N D, DALLADAY-SIMPSON P, et al. Structure and metallicity of phase Ⅴ of hydrogen [J]. Physical Review Letters, 2018, 120(25): 255701. doi: 10.1103/PhysRevLett.120.255701
    [23]
    MAO H K, HEMLEY R J. Ultrahigh-pressure transitions in solid hydrogen [J]. Reviews of Modern Physics, 1994, 66(2): 671–692. doi: 10.1103/RevModPhys.66.671
    [24]
    LORENZANA H E, SILVERA I F, GOETTEL K A. Orientational phase transitions in hydrogen at megabar pressures [J]. Physical Review Letters, 1990, 64(16): 1939–1942. doi: 10.1103/PhysRevLett.64.1939
    [25]
    HEMLEY R J, MAO H K. Phase transition in solid molecular hydrogen at ultrahigh pressures [J]. Physical Review Letters, 1988, 61(7): 857–860. doi: 10.1103/PhysRevLett.61.857
    [26]
    HOWIE R T, GUILLAUME C L, SCHELER T, et al. Mixed molecular and atomic phase of dense hydrogen [J]. Physical Review Letters, 2012, 108(12): 125501. doi: 10.1103/PhysRevLett.108.125501
    [27]
    JI C, LI B, LIU W J, et al. Ultrahigh-pressure isostructural electronic transitions in hydrogen [J]. Nature, 2019, 573(7775): 558–562. doi: 10.1038/s41586-019-1565-9
    [28]
    MEIER T, LANIEL D, PENA-ALVAREZ M, et al. Nuclear spin coupling crossover in dense molecular hydrogen [J]. Nature Communications, 2020, 11(1): 6334. doi: 10.1038/s41467-020-19927-y
    [29]
    ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [30]
    LI Y W, HAO J, LIU H Y, et al. The metallization and superconductivity of dense hydrogen sulfide [J]. The Journal of Chemical Physics, 2014, 140(17): 174712. doi: 10.1063/1.4874158
    [31]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 Kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [32]
    DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high- Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [33]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [34]
    LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high- Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [35]
    SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [36]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [37]
    WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [38]
    MA L, WANG K, XIE Y, et al. High-temperature superconducting phase in clathrate calcium hydride CaH6 up to 215 K at a pressure of 172 GPa [J]. Physical Review Letters, 2022, 128(16): 167001. doi: 10.1103/PhysRevLett.128.167001
    [39]
    SUN Y, LV J, XIE Y, et al. Route to a superconducting phase above room temperature in electron-doped hydride compounds under high pressure [J]. Physical Review Letters, 2019, 123(9): 097001. doi: 10.1103/PhysRevLett.123.097001
    [40]
    LI B, JI C, YANG W G, et al. Diamond anvil cell behavior up to 4 Mbar [J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(8): 1713–1717. doi: 10.1073/pnas.1721425115
    [41]
    卢志鹏, 祝文军, 刘绍军, 等. 非静水压条件下铁从 α ε结构相变的第一性原理计算[J]. 物理学报, 2009, 58(3): 2083–2089. doi: 10.7498/aps.58.2083

    LU Z P, ZHU W J, LIU S J, et al. Structure phase transition from α to ε in Fe under non-hydrostatic pressure: an ab initio study [J]. Acta Physica Sinica, 2009, 58(3): 2083–2089. doi: 10.7498/aps.58.2083
    [42]
    CHENG C. Uniaxial phase transition in Si: ab initio calculations [J]. Physical Review B, 2003, 67(13): 134109. doi: 10.1103/PhysRevB.67.134109
    [43]
    GAÁL-NAGY K, STRAUCH D. Transition pressures and enthalpy barriers for the cubic diamond→ β-tin transition in Si and Ge under nonhydrostatic conditions [J]. Physical Review B, 2006, 73(13): 134101. doi: 10.1103/PhysRevB.73.134101
    [44]
    DANG C Q, LU A L, WANG H Y, et al. Diamond semiconductor and elastic strain engineering [J]. Journal of Semiconductors, 2022, 43(2): 021801. doi: 10.1088/1674-4926/43/2/021801
    [45]
    DANG C Q, CHOU J P, DAI B, et al. Achieving large uniform tensile elasticity in microfabricated diamond [J]. Science, 2021, 371(6524): 76–78. doi: 10.1126/science.abc4174
    [46]
    LIU C, SONG X Q, LI Q, et al. Smooth flow in diamond: atomistic ductility and electronic conductivity [J]. Physical Review Letters, 2019, 123(19): 195504. doi: 10.1103/PhysRevLett.123.195504
    [47]
    LIU C, SONG X Q, LI Q, et al. Superconductivity in compression-shear deformed diamond [J]. Physical Review Letters, 2020, 124(14): 147001. doi: 10.1103/PhysRevLett.124.147001
    [48]
    LIU C, SONG X Q, LI Q, et al. Superconductivity in shear strained semiconductors [J]. Chinese Physics Letters, 2021, 38(8): 086301. doi: 10.1088/0256-307X/38/8/086301
    [49]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169. doi: 10.1103/PhysRevB.54.11169
    [50]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [51]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [52]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [53]
    ZHANG Y, SUN H, CHEN C F. Superhard cubic BC2N compared to diamond [J]. Physical Review Letters, 2004, 93(19): 195504. doi: 10.1103/PhysRevLett.93.195504
    [54]
    PAN Z C, SUN H, CHEN C F. Colossal shear-strength enhancement of low-density cubic BC2N by nanoindentation [J]. Physical Review Letters, 2007, 98(13): 135505. doi: 10.1103/PhysRevLett.98.135505
    [55]
    PAN Z C, SUN H, CHEN C F. Indenter-angle-sensitive fracture modes and stress response at incipient plasticity [J]. Physical Review B, 2009, 79(10): 104102. doi: 10.1103/PhysRevB.79.104102
    [56]
    PAN Z C, SUN H, ZHANG Y, et al. Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite [J]. Physical Review Letters, 2009, 102(5): 055503. doi: 10.1103/PhysRevLett.102.055503
    [57]
    BARONI S, DE GIRONCOLI S, DAL CORSO A, et al. Phonons and related crystal properties from density-functional perturbation theory [J]. Reviews of Modern Physics, 2001, 73(2): 515–562. doi: 10.1103/RevModPhys.73.515
    [58]
    GIANNOZZI P, BARONI S, BONINI N, et al. Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
    [59]
    TSE J S, KLUG D D, YAO Y S, et al. Structure and spectroscopic properties of dense solid hydrogen at 160 GPa [J]. Solid State Communications, 2008, 145(1/2): 5–10. doi: 10.1016/j.ssc.2007.10.018
    [60]
    MONSERRAT B, NEEDS R J, GREGORYANZ E, et al. Hexagonal structure of phase Ⅲ of solid hydrogen [J]. Physical Review B, 2016, 94(13): 134101. doi: 10.1103/PhysRevB.94.134101
    [61]
    SINGH R, AZADI S, KÜHNE T D. Anharmonicity and finite-temperature effects on the structure, stability, and vibrational spectrum of phase III of solid molecular hydrogen [J]. Physical Review B, 2014, 90(1): 014110. doi: 10.1103/PhysRevB.90.014110
    [62]
    MONACELLI L, CASULA M, NAKANO K, et al. Quantum phase diagram of high-pressure hydrogen [J]. Nature Physics, 2023, 19(6): 845–850. doi: 10.1038/s41567-023-01960-5
    [63]
    BORINAGA M, RIEGO P, LEONARDO A, et al. Anharmonic enhancement of superconductivity in metallic molecular Cmca-4 hydrogen at high pressure: a first-principles study [J]. Journal of Physics: Condensed Matter, 2016, 28(49): 494001. doi: 10.1088/0953-8984/28/49/494001
    [64]
    WEN L B, WU H, SUN H, et al. Profound softening and shear-induced melting of diamond under extreme conditions: an ab- initio molecular dynamics study [J]. Carbon, 2019, 155: 361–368. doi: 10.1016/j.carbon.2019.08.079
    [65]
    LI Z G, CHEN Q F, GU Y J, et al. Multishock compression of dense cryogenic hydrogen-helium mixtures up to 60 GPa: validating the equation of state calculated from first principles [J]. Physical Review B, 2018, 98(6): 064101. doi: 10.1103/PhysRevB.98.064101
    [66]
    RANIERI U, CONWAY L J, DONNELLY M E, et al. Formation and stability of dense methane-hydrogen compounds [J]. Physical Review Letters, 2022, 128(21): 215702. doi: 10.1103/PhysRevLett.128.215702
    [67]
    SONG X Q, YIN K T, WANG Y C, et al. Exotic hydrogen bonding in compressed ammonia hydrides [J]. The Journal of Physical Chemistry Letters, 2019, 10(11): 2761–2766. doi: 10.1021/acs.jpclett.9b00973
    [68]
    HEMLEY R J, MAO H K, SHEN G Y, et al. X-ray imaging of stress and strain of diamond, iron, and tungsten at megabar pressures [J]. Science, 1997, 276(5316): 1242–1245. doi: 10.1126/science.276.5316.1242
    [69]
    MAO H K, BADRO J, SHU J F, et al. Strength, anisotropy, and preferred orientation of solid argon at high pressures [J]. Journal of Physics: Condensed Matter, 2006, 18(25): S963–S968. doi: 10.1088/0953-8984/18/25/S04
    [70]
    HEMLEY R J, MAO H K. Optical studies of hydrogen above 200 gigapascals: evidence for metallization by band overlap [J]. Science, 1989, 244(4911): 1462–1465. doi: 10.1126/science.244.4911.1462
    [71]
    NARAYANA C, LUO H, ORLOFF J, et al. Solid hydrogen at 342 GPa: no evidence for an alkali metal [J]. Nature, 1998, 393(6680): 46–49. doi: 10.1038/29949
    [72]
    LOUBEYRE P, OCCELLI F, LETOULLEC R. Optical studies of solid hydrogen to 320 GPa and evidence for black hydrogen [J]. Nature, 2002, 416(6881): 613–617. doi: 10.1038/416613a
    [73]
    EREMETS M I, TROYAN I A. Conductive dense hydrogen [J]. Nature Materials, 2011, 10(12): 927–931. doi: 10.1038/nmat3175
    [74]
    ZHA C S, LIU Z X, HEMLEY R J. Synchrotron infrared measurements of dense hydrogen to 360 GPa [J]. Physical Review Letters, 2012, 108(14): 146402. doi: 10.1103/PhysRevLett.108.146402
  • Relative Articles

    [1]ZENG Yangyang, ZHU Gangbei, WANG Wentao, BAI Sha, ZHENG Zhaoyang, YU Guoyang, YANG Yanqiang. Mid- and Far-Infrared Spectroscopic and First-Principles Computational Study of the Structural Evolution of Hydrazine Nitrate under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(3): 030110. doi: 10.11858/gywlxb.20230804
    [2]DU Yu, SUN Ying, WANG Yanchao, ZHONG Xin. Superconductivity of Solid Hydrogen under Extreme Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020105. doi: 10.11858/gywlxb.20230722
    [3]GU Xiaoyu, LIU Lei. First-Principles Calculation on Crystal Structure and Elastic Properties of Py-FeO2, Py-FeOOH and ε-FeOOH under High Pressures[J]. Chinese Journal of High Pressure Physics, 2022, 36(1): 012201. doi: 10.11858/gywlxb.20210789
    [4]SUI Zhilei, DAI Rucheng, WANG Zhongping, ZHENG Xianxu, ZHANG Zengming. High Pressure Phase Transition of HMX Crystal under Non-Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 030102. doi: 10.11858/gywlxb.20220559
    [5]ZHAO Wendi, DUAN Defang, CUI Tian. New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
    [6]LI Peiyun, HUANG Haijun, LI Yanli. First-Principles Calculations of the Equation of State and Sound Velocity of Fe-3.24%Si: Implications for the Composition of Earth’s Inner Core[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060101. doi: 10.11858/gywlxb.20190781
    [7]GENG Huayun, SUN Yi, XIANG Shikai. Computation and Simulation of High-Pressure Properties of Complex Materials: A Brief Review on the Methods Based on First-Principles[J]. Chinese Journal of High Pressure Physics, 2019, 33(3): 030102. doi: 10.11858/gywlxb.20190710
    [8]LI Zihe, LIU Chao, MA Mengdong, PAN Yilong, ZHAO Zhisheng, YU Dongli, HE Julong. Structure and Properties of Novel Superhard C5N:A First-Principles Study[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 010103. doi: 10.11858/gywlxb.20170606
    [9]GENG Huayun, SUN Yi. On the Novel Structure and Metallization of Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 020101. doi: 10.11858/gywlxb.20170674
    [10]ZHANG Qiang, PENG Fang, LIU Dong-Qiong, FAN Cong, LIANG Hao, GUAN Shi-Xue, TAN Li-Jie. Influence of the Strength of Materials on Pressure Calibration under Non-Hydrostatic Compression[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 353-357. doi: 10.11858/gywlxb.2017.04.001
    [11]YANG Xiao-Cui, ZHAO Yan-Hui, LUO Xiang-Yi, XIAO Jun-Ping. First-Principles Calculations of Pressure-Induced Phase Transition of Lanthanide Mononitrides[J]. Chinese Journal of High Pressure Physics, 2014, 28(5): 545-550. doi: 10.11858/gywlxb.2014.05.006
    [12]RAN Xiang-Tian, HE Duan-Wei, LIU Jing, WANG Qi-Ming, WANG Pei, WANG Jiang-Hua, CHEN Hai-Hua, PENG Fang. Stress Transmission of Materials with Different Strengths under Non-Hydrostatic Compression[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 205-210. doi: 10.11858/gywlxb.2013.02.006
    [13]HAO Ai-Min, ZHOU Tie-Jun, ZHU Yan, LIU Xin. First-Principles Investigations on Structure Transformation, Elastic and Thermodynamic Properties of TiN under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 395-401. doi: 10.11858/gywlxb.2012.04.006
    [14]YANG Xiao-Cui, ZHAO Yu-Wei, GAO Zhong-Ming, LIU Xin, ZHANG Li-Xin, WANG Xiao-Ming, HAO Ai-Min. First-Principles Study of Structural Stabilities, Electronic and Optical Properties of CaF2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 225-230 . doi: 10.11858/gywlxb.2010.03.011
    [15]ZHOU Bo, WANG Ru-Ju, ZHANG You-Lin, LI Feng-Ying, YU Ri-Cheng, JIN Chang-Qing. Elastic Properties of MgCNi3 Superconductor under Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 2003, 17(2): 157-160 . doi: 10.11858/gywlxb.2003.02.015
    [16]LI Shao-Chun, ZHU Jia-Lin, YU Ri-Cheng, LI Feng-Ying, LIU Zhen-Xing, JIN Chang-Qing. High Pressure Synthesis of Bulk MgB2 Superconductor[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 226-228 . doi: 10.11858/gywlxb.2001.03.010
    [17]LI Jun-Jie, ZHU Zai-Wan, JIN Zeng-Sun, ZOU Guang-Tian. Theoretical Calculation of Transformation Pressure in Solid Hydrogen Metallization[J]. Chinese Journal of High Pressure Physics, 2001, 15(3): 215-220 . doi: 10.11858/gywlxb.2001.03.008
    [18]WANG Ji-Fang, Manghnani M H, GU Hui-Cheng, LI Feng-Ying. The Elastic Properties of Some High Tc Superconductors[J]. Chinese Journal of High Pressure Physics, 1991, 5(2): 130-136 . doi: 10.11858/gywlxb.1991.02.008
    [19]PANG Xiao-Feng. Investigation on Superconductivity of Metallic Hydrogen[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 319-326 . doi: 10.11858/gywlxb.1988.04.005
    [20]GOU Qing-Quan. Mechanism for the Metallization of Solid Hydrogen under High Pressure[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 3-6 . doi: 10.11858/gywlxb.1987.01.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(344) PDF downloads(127) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return