Citation: | ZHOU Xiaoling, WANG Pan. Methods and Research Progress in High Pressure Mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715 |
[1] |
CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211
|
[2] |
ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
|
[3] |
GAO Y, MA Y Z, AN Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K [J]. Carbon, 2019, 146: 364–368. doi: 10.1016/j.carbon.2019.02.012
|
[4] |
LI X Y, JIN Z H, ZHOU X, et al. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains [J]. Science, 2020, 370(6518): 831–836. doi: 10.1126/science.abe1267
|
[5] |
SINGH A K, BALASINGH C, MAO H K, et al. Analysis of lattice strains measured under nonhydrostatic pressure [J]. Journal of Applied Physics, 1998, 83(12): 7567–7575. doi: 10.1063/1.367872
|
[6] |
SINGH A K. The lattice strains in a specimen (cubic system) compressed nonhydrostaticallyin an opposed anvil device [J]. Journal of Applied Physics, 1993, 73(9): 4278–4286. doi: 10.1063/1.352809
|
[7] |
DUFFY T S, HEMLEY R J, MAO H K. Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa [J]. Physical Review Letters, 1995, 74(8): 1371–1374. doi: 10.1103/PhysRevLett.74.1371
|
[8] |
CHEN B, LUTKER K, LEI J L, et al. Detecting grain rotation at the nanoscale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3350–3353. doi: 10.1073/pnas.1324184111
|
[9] |
ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101
|
[10] |
MAO H K, SHU J F, SHEN G Y, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core [J]. Nature, 1998, 396(6713): 741–743. doi: 10.1038/25506
|
[11] |
MARQUARDT H, MIYAGI L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity [J]. Nature Geoscience, 2015, 8(4): 311–314. doi: 10.1038/ngeo2393
|
[12] |
IMMOOR J, MIYAGI L, LIERMANN H P, et al. Weak cubic CaSiO3 perovskite in the Earth’s mantle [J]. Nature, 2022, 603(7900): 276–279. doi: 10.1038/s41586-021-04378-2
|
[13] |
WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressures of the Earth’s inner core [J]. Nature, 2000, 405(6790): 1044–1047. doi: 10.1038/35016558
|
[14] |
MERKEL S, MCNAMARA A K, KUBO A, et al. Deformation of (Mg,Fe)SiO3 post-perovskite and D'' anisotropy [J]. Science, 2007, 316(5832): 1729–1732. doi: 10.1126/science.1140609
|
[15] |
MIYAGI L, KANITPANYACHAROEN W, KAERCHER P, et al. Slip systems in MgSiO3 post-perovskite: implications for D'' anisotropy [J]. Science, 2010, 329(5999): 1639–1641. doi: 10.1126/science.1192465
|
[16] |
TSUJINO N, NISHIHARA Y, YAMAZAKI D, et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite [J]. Nature, 2016, 539(7627): 81–84. doi: 10.1038/nature19777
|
[17] |
WU X, LIN J F, KAERCHER P, et al. Seismic anisotropy of the D'' layer induced by (001) deformation of post-perovskite [J]. Nature Communications, 2017, 8(1): 14669. doi: 10.1038/ncomms14669
|
[18] |
IMMOOR J, MARQUARDT H, MIYAGI L, et al. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments [J]. Earth and Planetary Science Letters, 2018, 489: 251–257. doi: 10.1016/j.jpgl.2018.02.045
|
[19] |
SINGH A K, KENNEDY G C. Uniaxial stress component in tungsten carbide anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1974, 45(11): 4686–4691. doi: 10.1063/1.1663119
|
[20] |
SINGH A K, BALASINGH C. Uniaxial stress component in diamond anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1977, 48(12): 5338–5340. doi: 10.1063/1.323568
|
[21] |
SINGH A K, MAO H K, SHU J F, et al. Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron [J]. Physical Review Letters, 1998, 80(10): 2157–2160. doi: 10.1103/PhysRevLett.80.2157
|
[22] |
MERKEL S, MIYAJIMA N, ANTONANGELI D, et al. Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure [J]. Journal of Applied Physics, 2006, 100(2): 023510. doi: 10.1063/1.2214224
|
[23] |
PERREAULT C, HUSTON L Q, BURRAGE K, et al. Strength of tantalum to 276 GPa determined by two X-ray diffraction techniques using diamond anvil cells [J]. Journal of Applied Physics, 2022, 131(1): 015905. doi: 10.1063/5.0073228
|
[24] |
HUSTON L Q, COUPER S C, JACOBSEN M, et al. Yield strength of CeO2 measured from static compression in a radial diamond anvil cell [J]. Journal of Applied Physics, 2022, 132(11): 115901. doi: 10.1063/5.0097975
|
[25] |
CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6
|
[26] |
SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
|
[27] |
CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353
|
[28] |
SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636
|
[29] |
ZENG Z D, ZENG Q S, GE M Y, et al. Origin of plasticity in nanostructured silicon [J]. Physical Review Letters, 2020, 124(18): 185701. doi: 10.1103/PhysRevLett.124.185701
|
[30] |
SPEZIALE S, IMMOOR J, ERMAKOV A, et al. The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to 32 GPa and 1073 K [J]. Journal of Applied Physics, 2019, 126(10): 105107. doi: 10.1063/1.5115350
|
[31] |
WENK H R, LONARDELLI I, MERKEL S, et al. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry [J]. Journal of Physics: Condensed Matter, 2006, 18(25): S933–S947. doi: 10.1088/0953-8984/18/25/S02
|
[32] |
MIYAGI L, WENK H R. Texture development and slip systems in bridgmanite and bridgmanite+ferropericlase aggregates [J]. Physics and Chemistry of Minerals, 2016, 43(8): 597–613. doi: 10.1007/s00269-016-0820-y
|
[33] |
IMMOOR J, MARQUARDT H, MIYAGI L, et al. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell [J]. Review of Scientific Instruments, 2020, 91(4): 045121. doi: 10.1063/1.5143293
|
[34] |
LEVITAS V I. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments [J]. Physical Review B, 2004, 70(18): 184118. doi: 10.1103/PhysRevB.70.184118
|
[35] |
JI C, LEVITAS V I, ZHU H Y, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19108–19112. doi: 10.1073/pnas.1214976109
|
[36] |
BLANK V, POPOV M, BUGA S, et al. Is C60 fullerite harder than diamond? [J]. Physics Letters A, 1994, 188(3): 281–286. doi: 10.1016/0375-9601(94)90451-0
|
[37] |
LEVITAS V I, MA Y Z, SELVI E, et al. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure [J]. Physical Review B, 2012, 85(5): 054114. doi: 10.1103/PhysRevB.85.054114
|
[38] |
GAO Y, MA Y Z. Shear-driven chemical decomposition of boron carbide [J]. The Journal of Physical Chemistry C, 2019, 123(37): 23145–23150. doi: 10.1021/acs.jpcc.9b03599
|
[39] |
IRIFUNE T, KURIO A, SAKAMOTO S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 593–600. doi: 10.1016/j.pepi.2003.06.004
|
[40] |
BOVENKERK H P, BUNDY F P, HALL H T, et al. Preparation of diamond [J]. Nature, 1959, 184(4693): 1094–1098. doi: 10.1038/1841094a0
|
[41] |
PÉREZ-PRADO M T, ZHILYAEV A P. First experimental observation of shear induced hcp to bcc transformation in pure Zr [J]. Physical Review Letters, 2009, 102(17): 175504. doi: 10.1103/PhysRevLett.102.175504
|
[42] |
WU W Q, SONG M, NI S, et al. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion [J]. Scientific Reports, 2017, 7(1): 46720. doi: 10.1038/srep46720
|
[43] |
BÜNZ J, BRINK T, TSUCHIYA K, et al. Low temperature heat capacity of a severely deformed metallic glass [J]. Physical Review Letters, 2014, 112(13): 135501. doi: 10.1103/PhysRevLett.112.135501
|
[44] |
KANG J Y, KIM J G, PARK H W, et al. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion [J]. Scientific Reports, 2016, 6(1): 26590. doi: 10.1038/srep26590
|
[45] |
EDALATI K, MASUDA T, ARITA M, et al. Room-temperature superplasticity in an ultrafine-grained magnesium alloy [J]. Scientific Reports, 2017, 7(1): 2662. doi: 10.1038/s41598-017-02846-2
|
[46] |
NGUYEN N T C, ASGHARI-RAD P, SATHIYAMOORTHI P, et al. Ultrahigh high-strain-rate superplasticity in a nano-structured high-entropy alloy [J]. Nature Communications, 2020, 11(1): 2736. doi: 10.1038/s41467-020-16601-1
|
[47] |
CHONG Y, GHOLIZADEH R, TSURU T, et al. Grain refinement in titanium prevents low temperature oxygen embrittlement [J]. Nature Communications, 2023, 14(1): 404. doi: 10.1038/s41467-023-36030-0
|
[48] |
WANG Y B, DURHAM W B, GETTING I C, et al. The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa [J]. Review of Scientific Instruments, 2003, 74(6): 3002–3011. doi: 10.1063/1.1570948
|
[49] |
GIRARD J, AMULELE G, FARLA R, et al. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions [J]. Science, 2016, 351(6269): 144–147. doi: 10.1126/science.aad3113
|
[50] |
WEHRENBERG C E, MCGONEGLE D, BOLME C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics [J]. Nature, 2017, 550(7677): 496–499. doi: 10.1038/nature24061
|
[51] |
TURNEAURE S J, RENGANATHAN P, WINEY J, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
|
[52] |
CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
|
[53] |
MO M Z, TANG M X, CHEN Z J, et al. Ultrafast visualization of incipient plasticity in dynamically compressed matter [J]. Nature Communications, 2022, 13(1): 1055. doi: 10.1038/s41467-022-28684-z
|
[1] | ZHU Zhikai, LI Zhongyang, KONG Lingping, LIU Gang. Recent Progress on Structural and Functional Evolutions of Metal Halide Perovskites under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050101. doi: 10.11858/gywlxb.20230768 |
[2] | CHEN Yinqi, WANG Hongbo. Hydrogen-Rich Superconductors with High Critical Temperature under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(2): 020103. doi: 10.11858/gywlxb.20230842 |
[3] | ZHAO Huifang, TAN Dayong, JIANG Feng, XIE Yafei, JIANG Changguo, LUO Xingli, XIAO Wansheng. Raman Evidences of Chemical Reaction of Re-H2O System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040102. doi: 10.11858/gywlxb.20200518 |
[4] | YANG Ke, JIANG Sheng, YAN Shuai, ZHOU Chunyin, LI Aiguo. Application of Shanghai Synchrotron Radiation Source in High Pressure Research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050102. doi: 10.11858/gywlxb.20200584 |
[5] | ZHOU Xiaoling, CHEN Bin. Plastic Deformation and Size Strengthening of Nanometals[J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 060101. doi: 10.11858/gywlxb.20200625 |
[6] | JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711 |
[7] | SONG Lubin, GUO Zhangxin, LI Zhonggui, LUAN Yunbo, ZHAO Dan, ZHANG Qi. Effect of Defective Graphene on Mechanical Properties of Reinforced Resin Matrix Composites[J]. Chinese Journal of High Pressure Physics, 2018, 32(6): 064101. doi: 10.11858/gywlxb.20180586 |
[8] | LIU Shenggang, JING Qiumin, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong, LI Zeren. In Situ Measurement of the Cupping Deformation of Diamond Anvil under High Pressures[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548 |
[9] | XU Cong, SUN Fei, YANG Wen-Ge. High Pressure Effect on the Structure and Ionic Conductivity in Layered Cobaltite LiCoO2[J]. Chinese Journal of High Pressure Physics, 2017, 31(5): 529-534. doi: 10.11858/gywlxb.2017.05.004 |
[10] | HOU Qi-Yue, JING Qiu-Min, ZHANG Yi, LIU Sheng-Gang, BI Yan, LIU Lei. Applications of Synchrotron X-Ray Imaging Techniquesin High Static Pressure Researches[J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 537-547. doi: 10.11858/gywlxb.2016.06.016 |
[11] | CHU Kun-Kun, YANG Kun, ZHU Xiang, LI Hai-Ning, SU Lei. High-Pressure Viscosity Measurement of Liquids Based on Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 358-362. doi: 10.11858/gywlxb.2016.05.002 |
[12] | HU Yun, CHEN Li-Ying, LIU Xiu-Ru, PENG Xiao-Juan, SU Lei, HONG Shi-Ming. Evolution of the Mechanical Behavior of Pyrophyllite Gasket between Flat Anvils under Different Loading Pressures[J]. Chinese Journal of High Pressure Physics, 2015, 29(6): 401-409. doi: 10.11858/gywlxb.2015.06.001 |
[13] | HAN Qi-Gang, BAN Qing-Chu. Design Theory, Research and Development of Miniature Ultra-High Pressure Devices[J]. Chinese Journal of High Pressure Physics, 2015, 29(5): 337-346. doi: 10.11858/gywlxb.2015.05.003 |
[14] | GAO Chun-Xiao. In Situ Electrical Measurement in Diamond Anvil Cell Equipped with Microcircuit by Integration Technology[J]. Chinese Journal of High Pressure Physics, 2013, 27(1): 1-18. doi: 10.11858/gywlxb.2013.01.001 |
[15] | LI Ming, YANG Jie, YANG Wu-Ming, WANG Hui-Xin, LI Li-Xin, GAO Chun-Xiao. An in Situ Electrical Conductivity Measurement System in Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 27-32. doi: 10.11858/gywlxb.2012.01.004 |
[16] | WU Xiao-Xin, LI Min, LI Fang-Fei, ZHOU Qiang, GAO Wei, CUI Qi-Liang, ZOU Guang-Tian. Raman Scattering Studies of n-Octane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2009, 23(4): 305-309 . doi: 10.11858/gywlxb.2009.04.011 |
[17] | XU Bin, LI Li, TIAN Bin, FAN Xiao-Hong, FENG Li-Ming. Thermodynamic Analysis of Diamond Growth with Catalyst at HPHT[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 189-195 . doi: 10.11858/gywlxb.2009.03.005 |
[18] | GAO Ling-Ling, MA Yan-Mei, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, ZOU Guang-Tian, CUI Qi-Liang. Raman Spectra Characterization of Cycloheptane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013 |
[19] | ZHOU Kai-Yong, YU Xin-Lu. A Material Test Technique for Super-High Pressure Gasket Material[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 7-16 . doi: 10.11858/gywlxb.1990.01.002 |
[20] | WANG Li-Jun, HU Jing-Zhu, CHE Rong-Zheng, TANG Ru-Ming, CHEN Liang-Chen. A Diamond Anvil Cell with External Heater and Pressure Measurement by Using Ruby at High Temperature[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 335-339 . doi: 10.11858/gywlxb.1988.04.007 |