Volume 37 Issue 5
Nov 2023
Turn off MathJax
Article Contents
ZHOU Xiaoling, WANG Pan. Methods and Research Progress in High Pressure Mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715
Citation: ZHOU Xiaoling, WANG Pan. Methods and Research Progress in High Pressure Mechanics[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050101. doi: 10.11858/gywlxb.20230715

Methods and Research Progress in High Pressure Mechanics

doi: 10.11858/gywlxb.20230715
  • Received Date: 14 Aug 2023
  • Rev Recd Date: 25 Sep 2023
  • Available Online: 18 Oct 2023
  • Issue Publish Date: 07 Nov 2023
  • High pressure mechanics has set off a great wave of interdisciplinary researches among materials science and geosciences, providing solutions for the synthesis of novel materials with high challenge, improvement of mechanical properties of materials, and understanding of the seismic anisotropy and geodynamics in the inner of the Earth. Here we have reviewed recent research progress in high pressure mechanics, which includes diamond anvil cell combined with X-ray diffraction in a radial geometry, rotational diamond anvil cell induced shear strain, high pressure torsion-imposed shear strain, D-DIA induced plastic deformation and shock compression induced plastic deformation. These findings show the unique coupling effect of compression constraint and shear stress on tuning the structure, properties and mechanical behavior of materials, revealing the value and potential of high-pressure mechanics in research and application.

     

  • loading
  • [1]
    CHEN B, LUTKER K, RAJU S V, et al. Texture of nanocrystalline nickel: probing the lower size limit of dislocation activity [J]. Science, 2012, 338(6113): 1448–1451. doi: 10.1126/science.1228211
    [2]
    ZHOU X L, FENG Z Q, ZHU L L, et al. High-pressure strengthening in ultrafine-grained metals [J]. Nature, 2020, 579(7797): 67–72. doi: 10.1038/s41586-020-2036-z
    [3]
    GAO Y, MA Y Z, AN Q, et al. Shear driven formation of nano-diamonds at sub-gigapascals and 300 K [J]. Carbon, 2019, 146: 364–368. doi: 10.1016/j.carbon.2019.02.012
    [4]
    LI X Y, JIN Z H, ZHOU X, et al. Constrained minimal-interface structures in polycrystalline copper with extremely fine grains [J]. Science, 2020, 370(6518): 831–836. doi: 10.1126/science.abe1267
    [5]
    SINGH A K, BALASINGH C, MAO H K, et al. Analysis of lattice strains measured under nonhydrostatic pressure [J]. Journal of Applied Physics, 1998, 83(12): 7567–7575. doi: 10.1063/1.367872
    [6]
    SINGH A K. The lattice strains in a specimen (cubic system) compressed nonhydrostaticallyin an opposed anvil device [J]. Journal of Applied Physics, 1993, 73(9): 4278–4286. doi: 10.1063/1.352809
    [7]
    DUFFY T S, HEMLEY R J, MAO H K. Equation of state and shear strength at multimegabar pressures: magnesium oxide to 227 GPa [J]. Physical Review Letters, 1995, 74(8): 1371–1374. doi: 10.1103/PhysRevLett.74.1371
    [8]
    CHEN B, LUTKER K, LEI J L, et al. Detecting grain rotation at the nanoscale [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(9): 3350–3353. doi: 10.1073/pnas.1324184111
    [9]
    ZHOU X L, TAMURA N, MI Z Y, et al. Reversal in the size dependence of grain rotation [J]. Physical Review Letters, 2017, 118(9): 096101. doi: 10.1103/PhysRevLett.118.096101
    [10]
    MAO H K, SHU J F, SHEN G Y, et al. Elasticity and rheology of iron above 220 GPa and the nature of the Earth’s inner core [J]. Nature, 1998, 396(6713): 741–743. doi: 10.1038/25506
    [11]
    MARQUARDT H, MIYAGI L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity [J]. Nature Geoscience, 2015, 8(4): 311–314. doi: 10.1038/ngeo2393
    [12]
    IMMOOR J, MIYAGI L, LIERMANN H P, et al. Weak cubic CaSiO3 perovskite in the Earth’s mantle [J]. Nature, 2022, 603(7900): 276–279. doi: 10.1038/s41586-021-04378-2
    [13]
    WENK H R, MATTHIES S, HEMLEY R J, et al. The plastic deformation of iron at pressures of the Earth’s inner core [J]. Nature, 2000, 405(6790): 1044–1047. doi: 10.1038/35016558
    [14]
    MERKEL S, MCNAMARA A K, KUBO A, et al. Deformation of (Mg,Fe)SiO3 post-perovskite and D'' anisotropy [J]. Science, 2007, 316(5832): 1729–1732. doi: 10.1126/science.1140609
    [15]
    MIYAGI L, KANITPANYACHAROEN W, KAERCHER P, et al. Slip systems in MgSiO3 post-perovskite: implications for D'' anisotropy [J]. Science, 2010, 329(5999): 1639–1641. doi: 10.1126/science.1192465
    [16]
    TSUJINO N, NISHIHARA Y, YAMAZAKI D, et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite [J]. Nature, 2016, 539(7627): 81–84. doi: 10.1038/nature19777
    [17]
    WU X, LIN J F, KAERCHER P, et al. Seismic anisotropy of the D'' layer induced by (001) deformation of post-perovskite [J]. Nature Communications, 2017, 8(1): 14669. doi: 10.1038/ncomms14669
    [18]
    IMMOOR J, MARQUARDT H, MIYAGI L, et al. Evidence for {100}<011> slip in ferropericlase in Earth’s lower mantle from high-pressure/high-temperature experiments [J]. Earth and Planetary Science Letters, 2018, 489: 251–257. doi: 10.1016/j.jpgl.2018.02.045
    [19]
    SINGH A K, KENNEDY G C. Uniaxial stress component in tungsten carbide anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1974, 45(11): 4686–4691. doi: 10.1063/1.1663119
    [20]
    SINGH A K, BALASINGH C. Uniaxial stress component in diamond anvil high-pressure X-ray cameras [J]. Journal of Applied Physics, 1977, 48(12): 5338–5340. doi: 10.1063/1.323568
    [21]
    SINGH A K, MAO H K, SHU J F, et al. Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron [J]. Physical Review Letters, 1998, 80(10): 2157–2160. doi: 10.1103/PhysRevLett.80.2157
    [22]
    MERKEL S, MIYAJIMA N, ANTONANGELI D, et al. Lattice preferred orientation and stress in polycrystalline hcp-Co plastically deformed under high pressure [J]. Journal of Applied Physics, 2006, 100(2): 023510. doi: 10.1063/1.2214224
    [23]
    PERREAULT C, HUSTON L Q, BURRAGE K, et al. Strength of tantalum to 276 GPa determined by two X-ray diffraction techniques using diamond anvil cells [J]. Journal of Applied Physics, 2022, 131(1): 015905. doi: 10.1063/5.0073228
    [24]
    HUSTON L Q, COUPER S C, JACOBSEN M, et al. Yield strength of CeO2 measured from static compression in a radial diamond anvil cell [J]. Journal of Applied Physics, 2022, 132(11): 115901. doi: 10.1063/5.0097975
    [25]
    CHOKSHI A H, ROSEN A, KARCH J, et al. On the validity of the Hall-Petch relationship in nanocrystalline materials [J]. Scripta Metallurgica, 1989, 23(10): 1679–1683. doi: 10.1016/0036-9748(89)90342-6
    [26]
    SCHIØTZ J, DI TOLLA F D, JACOBSEN K W. Softening of nanocrystalline metals at very small grain sizes [J]. Nature, 1998, 391(6667): 561–563. doi: 10.1038/35328
    [27]
    CONRAD H, NARAYAN J. Mechanism for grain size softening in nanocrystalline Zn [J]. Applied Physics Letters, 2002, 81(12): 2241–2243. doi: 10.1063/1.1507353
    [28]
    SCHIØTZ J, JACOBSEN K W. A maximum in the strength of nanocrystalline copper [J]. Science, 2003, 301(5638): 1357–1359. doi: 10.1126/science.1086636
    [29]
    ZENG Z D, ZENG Q S, GE M Y, et al. Origin of plasticity in nanostructured silicon [J]. Physical Review Letters, 2020, 124(18): 185701. doi: 10.1103/PhysRevLett.124.185701
    [30]
    SPEZIALE S, IMMOOR J, ERMAKOV A, et al. The equation of state of TaC0.99 by X-ray diffraction in radial scattering geometry to 32 GPa and 1073 K [J]. Journal of Applied Physics, 2019, 126(10): 105107. doi: 10.1063/1.5115350
    [31]
    WENK H R, LONARDELLI I, MERKEL S, et al. Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry [J]. Journal of Physics: Condensed Matter, 2006, 18(25): S933–S947. doi: 10.1088/0953-8984/18/25/S02
    [32]
    MIYAGI L, WENK H R. Texture development and slip systems in bridgmanite and bridgmanite+ferropericlase aggregates [J]. Physics and Chemistry of Minerals, 2016, 43(8): 597–613. doi: 10.1007/s00269-016-0820-y
    [33]
    IMMOOR J, MARQUARDT H, MIYAGI L, et al. An improved setup for radial diffraction experiments at high pressures and high temperatures in a resistive graphite-heated diamond anvil cell [J]. Review of Scientific Instruments, 2020, 91(4): 045121. doi: 10.1063/1.5143293
    [34]
    LEVITAS V I. High-pressure mechanochemistry: conceptual multiscale theory and interpretation of experiments [J]. Physical Review B, 2004, 70(18): 184118. doi: 10.1103/PhysRevB.70.184118
    [35]
    JI C, LEVITAS V I, ZHU H Y, et al. Shear-induced phase transition of nanocrystalline hexagonal boron nitride to wurtzitic structure at room temperature and lower pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19108–19112. doi: 10.1073/pnas.1214976109
    [36]
    BLANK V, POPOV M, BUGA S, et al. Is C60 fullerite harder than diamond? [J]. Physics Letters A, 1994, 188(3): 281–286. doi: 10.1016/0375-9601(94)90451-0
    [37]
    LEVITAS V I, MA Y Z, SELVI E, et al. High-density amorphous phase of silicon carbide obtained under large plastic shear and high pressure [J]. Physical Review B, 2012, 85(5): 054114. doi: 10.1103/PhysRevB.85.054114
    [38]
    GAO Y, MA Y Z. Shear-driven chemical decomposition of boron carbide [J]. The Journal of Physical Chemistry C, 2019, 123(37): 23145–23150. doi: 10.1021/acs.jpcc.9b03599
    [39]
    IRIFUNE T, KURIO A, SAKAMOTO S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 593–600. doi: 10.1016/j.pepi.2003.06.004
    [40]
    BOVENKERK H P, BUNDY F P, HALL H T, et al. Preparation of diamond [J]. Nature, 1959, 184(4693): 1094–1098. doi: 10.1038/1841094a0
    [41]
    PÉREZ-PRADO M T, ZHILYAEV A P. First experimental observation of shear induced hcp to bcc transformation in pure Zr [J]. Physical Review Letters, 2009, 102(17): 175504. doi: 10.1103/PhysRevLett.102.175504
    [42]
    WU W Q, SONG M, NI S, et al. Dual mechanisms of grain refinement in a FeCoCrNi high-entropy alloy processed by high-pressure torsion [J]. Scientific Reports, 2017, 7(1): 46720. doi: 10.1038/srep46720
    [43]
    BÜNZ J, BRINK T, TSUCHIYA K, et al. Low temperature heat capacity of a severely deformed metallic glass [J]. Physical Review Letters, 2014, 112(13): 135501. doi: 10.1103/PhysRevLett.112.135501
    [44]
    KANG J Y, KIM J G, PARK H W, et al. Multiscale architectured materials with composition and grain size gradients manufactured using high-pressure torsion [J]. Scientific Reports, 2016, 6(1): 26590. doi: 10.1038/srep26590
    [45]
    EDALATI K, MASUDA T, ARITA M, et al. Room-temperature superplasticity in an ultrafine-grained magnesium alloy [J]. Scientific Reports, 2017, 7(1): 2662. doi: 10.1038/s41598-017-02846-2
    [46]
    NGUYEN N T C, ASGHARI-RAD P, SATHIYAMOORTHI P, et al. Ultrahigh high-strain-rate superplasticity in a nano-structured high-entropy alloy [J]. Nature Communications, 2020, 11(1): 2736. doi: 10.1038/s41467-020-16601-1
    [47]
    CHONG Y, GHOLIZADEH R, TSURU T, et al. Grain refinement in titanium prevents low temperature oxygen embrittlement [J]. Nature Communications, 2023, 14(1): 404. doi: 10.1038/s41467-023-36030-0
    [48]
    WANG Y B, DURHAM W B, GETTING I C, et al. The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa [J]. Review of Scientific Instruments, 2003, 74(6): 3002–3011. doi: 10.1063/1.1570948
    [49]
    GIRARD J, AMULELE G, FARLA R, et al. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions [J]. Science, 2016, 351(6269): 144–147. doi: 10.1126/science.aad3113
    [50]
    WEHRENBERG C E, MCGONEGLE D, BOLME C, et al. In situ X-ray diffraction measurement of shock-wave-driven twinning and lattice dynamics [J]. Nature, 2017, 550(7677): 496–499. doi: 10.1038/nature24061
    [51]
    TURNEAURE S J, RENGANATHAN P, WINEY J, et al. Twinning and dislocation evolution during shock compression and release of single crystals: real-time X-ray diffraction [J]. Physical Review Letters, 2018, 120(26): 265503. doi: 10.1103/PhysRevLett.120.265503
    [52]
    CHEN S, LI Y X, ZHANG N B, et al. Capture deformation twinning in Mg during shock compression with ultrafast synchrotron X-ray diffraction [J]. Physical Review Letters, 2019, 123(25): 255501. doi: 10.1103/PhysRevLett.123.255501
    [53]
    MO M Z, TANG M X, CHEN Z J, et al. Ultrafast visualization of incipient plasticity in dynamically compressed matter [J]. Nature Communications, 2022, 13(1): 1055. doi: 10.1038/s41467-022-28684-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)

    Article Metrics

    Article views(436) PDF downloads(190) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return