Citation: | WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708 |
[1] |
FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
|
[2] |
SU P D, LIU Y, ZHANG J K, et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2812–2817. doi: 10.1021/acs.jpclett.0c00503
|
[3] |
GHOSH S, SHANKAR H, KAR P. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field [J]. Materials Advances, 2022, 3(9): 3742–3765. doi: 10.1039/D2MA00071G
|
[4] |
LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor [J]. Journal of the American Chemical Society, 2014, 136(43): 15379–15385. doi: 10.1021/ja508464w
|
[5] |
ZHAO X G, YANG J H, FU Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. Journal of the American Chemical Society, 2017, 139(7): 2630–2638. doi: 10.1021/jacs.6b09645
|
[6] |
HAMDAN M, CHANDIRAN A K. Cs2PtI6 halide perovskite is stable to air, moisture, and extreme pH: application to photoelectrochemical solar water oxidation [J]. Angewandte Chemie International Edition, 2020, 59(37): 16033–16038. doi: 10.1002/anie.202000175
|
[7] |
PENG H P, XU L Y, SHENG Y L, et al. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance [J]. Small, 2021, 17(38): 2102149. doi: 10.1002/smll.202102149
|
[8] |
CHENG P F, ZHENG D Y, FENG L, et al. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission [J]. Journal of Energy Chemistry, 2022, 65: 600–604. doi: 10.1016/j.jechem.2021.06.033
|
[9] |
LIU S P, YANG B, CHEN J S, et al. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals [J]. Laser & Photonics Reviews, 2022, 16(2): 2100439. doi: 10.1002/LPOR.202100439
|
[10] |
WANG Z Y, CHEN Y, ZHANG C Y, et al. Electronic structure and optical properties of vacancy-ordered double perovskites Cs2PdBr x Cl6– x by first-principles calculation [J]. The Journal of Physical Chemistry C, 2020, 124(24): 13310–13315. doi: 10.1021/acs.jpcc.0c00137
|
[11] |
SAKAI N, HAGHIGHIRAD A A, FILIP M R, et al. Solution-processed cesium hexabromopalladate (Ⅳ), Cs2PdBr6, for optoelectronic applications [J]. Journal of the American Chemical Society, 2017, 139(17): 6030–6033. doi: 10.1021/jacs.6b13258
|
[12] |
MAHMOOD Q, HASSAN M, YOUSAF N, et al. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications [J]. Materials Science in Semiconductor Processing, 2022, 137: 106180. doi: 10.1016/j.mssp.2021.106180
|
[13] |
MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
|
[14] |
GUO S H, LI Y H, MAO Y H, et al. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating [J]. Science Advances, 2022, 8(44): eadd1984. doi: 10.1126/sciadv.add1984
|
[15] |
WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442
|
[16] |
WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D
|
[17] |
WANG L R, YAO P P, WANG F, et al. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6 [J]. Advanced Science, 2020, 7(6): 1902900. doi: 10.1002/advs.201902900
|
[18] |
姚盼盼, 王玲瑞, 王家祥, 等. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质 [J]. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
YAO P P, WANG L R, WANG J X, et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure [J]. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
|
[19] |
ABRIEL W, ZEHNDER E J. Vibronic coupling and dynamically distorted structures in hexahalogenotellurates (Ⅳ): low temperature X-ray diffraction (300–160 K) and FTIR-spectroscopic (300–5 K) results [J]. Zeitschrift für Naturforschung B, 2014, 42(10): 1273–1281. doi: 10.1515/znb-1987-1012
|
[20] |
BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
|
[21] |
FOLGUERAS M C, JIN J B, GAO M Y, et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X =Cl–, Br–, I–) single crystals [J]. The Journal of Physical Chemistry C, 2021, 125(45): 25126–25139. doi: 10.1021/acs.jpcc.1c08332
|
[22] |
郭宏伟, 刘然, 王玲瑞, 等. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究 [J]. 物理学报, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
GUO H W, LIU R, WANG L R, et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3 [J]. Acta Physica Sinica, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
|
[23] |
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (B), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224
|
[24] |
MUREFAH M A, MALAK A A, BOUZGARROU S, et al. Study of optoelectronic and thermoelectric properties of double perovskites for renewable energy [J]. Physica Scripta, 2021, 96: 125828. doi: 10.1088/1402-4896/ac297a
|