
Citation: | WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708 |
超高强度钢一般指屈服强度高于1.38 GPa或抗拉强度大于1.47 GPa的钢材料,此外,还需兼顾适当的韧性。超高强度钢因具有高强度、高韧度的优点,被广泛应用于航空、航天、海洋、能源以及国防装备领域,是高端制造业的核心材料[1]。
G54钢是我国自主研制的一种新型二次硬化超高强度钢,屈服强度极高,具有较高的潜在应用价值。秦玉荣等[2]采用分离式霍普金森压杆(split Hopkinson pressure bar,SHPB)研究了G54钢的动态压缩性能,获取了G54钢在5 000 s–1应变率以内的动态应力-应变曲线及应变率敏感性能。冯九胜[3]对包含G54钢在内的4种超高强度钢开展了冲击韧性试验和平面应变断裂韧性试验,对其冲击功、平面断裂韧度和断口形貌进行了分析和比较。
目前,针对G54钢的材料性能研究多集中于中低应变率范围,缺乏对高应变率及高压条件下材料性能的系统研究,限制了其在强冲击、高应变率及高压条件下的应用性能预估。为此,亟需对G54钢开展动高压性能实验研究以评估其动态力学性能。动高压性能研究中最常用的是飞片对称碰撞方法[4],即通过火炮、气炮或磁驱动等加载平台驱动飞片高速撞击试样[5–7],产生平面冲击波,通过测量平面冲击波的相关参数获得样品的动高压特性。平面冲击波的测量方法包括锰铜压力计方法[8]、电容器方法[9]及自由面速度测量方法[10]等。本研究拟采用火炮加载,通过自由面速度测量方法,获取G54钢在104~105 s–1应变率范围、13~23 GPa冲击压力条件下的动高压材料性能。对碰撞后的样品进行回收,观察样品的层裂现象,通过对层裂面开展金相分析,获得G54钢的层裂断裂主导因素,以期为G54钢材料的高压性能研究及应用推广提供实验数据支撑。
根据冲击波理论,冲击波间断面两侧满足质量、动量和能量守恒关系,可以得到
{ρ0(D−u0)=ρa(D−u)p−p0=ρ0(D−u0)(u−u0)Ea−E0=12(p+p0)(1ρ0−1ρa) | (1) |
式中:ρ0、ρa分别为冲击波阵面前、后的材料密度,D为冲击波波速,u0、u分别为冲击波阵面前、后的粒子速度,p0、p分别为冲击波阵面前、后的压力,E0、Ea分别为冲击波阵面前、后的内能。测量ρa、D、u、p和Ea 这5个参数中的任意2个,就能确定冲击方程组的解。本研究采用自由面速度测量方法,测量D和u 2个参数,从而获得冲击波状态参数,完成材料的动高压特性研究。采用与样品相同材料的飞片进行对称碰撞,典型碰靶及层裂发生过程如图1所示。
图2给出了样品及飞片内各过程的应力-速度(σ-v)曲线。当t<0时,即撞击发生前,靶片处于静止状态,飞片和弹托以同一速度向靶片运动,处于状态A;t=0时,飞片撞击试样(靶片),在飞片和靶片中同时产生反向运动的2组相同结构的压缩波系,包含弹性波和冲击波,若冲击速度足够高,冲击波后还将跟随相变波,其中,OB为弹性前驱波,状态B对应的应力即为Hugoniot弹性极限,BC为冲击波。上述压缩波到达试样自由面时,将从自由面反射稀疏波CD,状态D对应的背表面粒子速度达到最大值。由于飞片直接黏结在实心弹托上,压缩波到达飞片背面的卸载波并不完全卸载到O,而是卸载到状态E,飞片的波阻抗为基板的10倍以上,状态C到状态E的卸载波可以卸掉大部分的压应力。此外,波在基板内往返一次的时间远大于实验过程,因此,不影响实验信号的解读。从飞片和靶片背表面反射的稀疏波在靶片中心位置相遇,形成拉应力区域,一旦拉伸应力超过材料破坏要求的阈值且作用时间足够长,材料内部即可发生层裂破坏,出现裂缝,同时向裂缝两边传播拉伸波DF及EG,状态F和状态G对应的应力即为层裂强度,对应的速度差即为裂缝拉开的速度。
本实验在57 mm口径火炮上进行,实验装置如图3所示,装置实物如图4所示。将薄片状的G54钢飞片安装在弹托上,实验弹托为低阻抗的轻质材料。利用57 mm口径火炮将弹托发射至终点弹道速度v,撞击薄片状、厚度为飞片厚度的2倍、直径略小于飞片直径的G54钢样品。将样品安装在炮口的弹托上,并在样品的后方和侧面布置测速探头,分别测量样品的自由表面粒子速度和飞片撞击速度。
通过粒子速度波形可以反推材料的冲击响应性能,为了实现这一目的,需要首先获得材料的常温常压参数。采用排水法测量密度,超声回波法确定纵波和横波波速,从而反推弹性模量、泊松比、体波波速等参数。在一维应变条件下,纵波波速为
CL0=√(1−ν)E(1+ν)(1−2ν)ρ | (2) |
横波波速为
CT0=√E2(1+ν)ρ | (3) |
体波波速为
C0=√Kρ=√E3(1−2ν)ρ | (4) |
从而反推出泊松比
ν=(CL0/CT0)2−22(CL0/CT0)2−2 | (5) |
式中:ρ为密度,E为弹性模量,ν为泊松比,CL0为纵波波速,CT0为横波速度,C0为体波波速。实测结果如表1所示。
ρ/(kg⋅m−3) | CL0/(km⋅s−1) | C0/(km⋅s−1) | E/GPa | CT0/(km⋅s−1) | ν |
7 970 | 5.777 | 4.555 | 194.77 | 3.077 | 0.302 |
本研究获得了660~
参考典型波形试验[11]中各物理量的含义及数据处理方法,对实验结果进行处理。典型波形及各物理量的含义如图6所示。
Hugoniot弹性极限σHEL为
σHEL=ρ0CeuHEL | (6) |
式中:Ce为弹性前驱波波速,可由常温常压下的纵波波速CL0代替;uHEL为弹性波阵面两侧的粒子速度间断,为自由面粒子速度波形中的Hugoniot弹性极限对应的速度拐点的1/2。
层裂强度为
σspall=12ρ0C0(umax−uspall) | (7) |
式中:umax为自由面粒子速度的最大值,uspall为层裂信号第1个谷底的粒子速度。
发生冲击相变的压力为
σphase=ρ0CeuHEL+ρ0Cpl(up1−uHEL) | (8) |
式中:σphase为发生冲击相变的压力,Cpl为塑性波速,up1为相变拐点对应的粒子速度。塑性波和相变波的波速由探针测得的波形到达时间计算获得。
结合之前获得的密度及声速等材料参数,反推获得材料冲击响应参数,如表2所示,其中:DPT为相变后的冲击波速,up2为相变后的粒子速度。
No. | v/(m⋅s−1) | σHEL/GPa | σphase/GPa | σspall/GPa | D/(km⋅s−1) | u/(km⋅s−1) | DPT/(km⋅s−1) | up2/(km⋅s−1) |
1 | 660 | 3.147 5 | 5.824 7 | 4.820 | 0.306 | |||
2 | 880 | 3.058 6 | 5.067 9 | 5.041 | 0.315 | |||
3 | 928 | 3.357 4 | 6.540 7 | 5.088 | 0.335 | |||
4 | 1 026 | 3.339 8 | 13.50 | 7.394 6 | 4.886 | 0.342 | 3.447 | 0.474 |
5 | 1 127 | 3.591 1 | 14.55 | 8.198 5 | 5.277 | 0.340 | 3.938 | 0.530 |
6 | 1 231 | 3.443 5 | 14.22 | 8.175 8 | 5.274 | 0.333 | 4.182 | 0.589 |
7 | 1 245 | 3.374 9 | 13.79 | 6.075 5 | 5.106 | 0.329 | 4.264 | 0.597 |
8 | 1 431 | 3.155 5 | 14.54 | 6.266 5 | 5.028 | 0.352 | 4.673 | 0.699 |
根据实验数据,获得G54钢的Hugoniot弹性极限σHEL=3.308 5 GPa,层裂强度σspall=6.693 GPa。相较于类似的高强合金钢,如无钴合金钢(Hugoniot弹性极限为2.35 GPa、层裂强度为4.07 GPa)[11]和AF1410(Hugoniot弹性极限为2.74 GPa、层裂强度为4.67 GPa)[12],G54钢的屈服强度和层裂强度皆有明显提升。
对G54钢的冲击波速度和粒子速度按照相变前和相变后进行分段线性拟合,可以得到相变前和相变后材料的冲击波速度-粒子速度(D-u)关系,如图7所示。冲击波速度与粒子速度的线性关系可以表示为
D={4.524+1.636uu⩽ | (9) |
式中:D和u的单位均为km/s。
实验中获得了典型的层裂信号,对层裂片进行了完整回收,回收的飞片及样品形貌如图8所示,可以看出,样品沿厚度中线附近层裂,层裂面上有明显的韧性断裂痕迹。
对回收样品进行了金相分析,典型结果如图9所示。当飞片速度为660 m/s时,样品层裂面附近未观察到绝热剪切相关的层裂破坏,仅观察到微孔洞和孔洞聚合,说明破坏前经历了微塑性变形,损伤迅速钝化,最终以微孔洞聚合的韧性破坏为主。当飞片速度增大到880 m/s时,样品层裂面附近既存在微孔洞聚合主导的韧性破坏,也存在微孔洞通过绝热剪切带连接聚合后形成的损伤带,表明此时2种韧性损伤机制处于竞争状态。当飞片速度进一步增大到
通过开展G54钢的飞片对称碰撞实验,获得了飞片速度为600~
(1) G54钢的Hugoniot弹性极限 {\sigma }_{\mathrm{H}\mathrm{E}\mathrm{L}} =3.308 5 GPa,层裂强度 {\sigma }_{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{l}\mathrm{l}} =6.693 GPa,较类似材料强度有显著提升;
(2) G54钢在352~472 m/s粒子速度范围内存在显著的相变过程,相变前后的状态方程参数存在显著差异,按照相变前和相变后进行分段线性拟合,得到G54钢的D-u关系在相变前为D=4.524+1.636u,相变后为D=1.051+5.278u;
(3) 通过对回收样品进行金相分析,可以明显观察到G54钢的层裂损伤主导机制从微孔洞聚合的韧性损伤向绝热剪切主导的韧性损伤转变的过程。
实验结果可为G54钢的高压性能研究及应用推广提供数据支撑。
[1] |
FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
|
[2] |
SU P D, LIU Y, ZHANG J K, et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2812–2817. doi: 10.1021/acs.jpclett.0c00503
|
[3] |
GHOSH S, SHANKAR H, KAR P. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field [J]. Materials Advances, 2022, 3(9): 3742–3765. doi: 10.1039/D2MA00071G
|
[4] |
LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor [J]. Journal of the American Chemical Society, 2014, 136(43): 15379–15385. doi: 10.1021/ja508464w
|
[5] |
ZHAO X G, YANG J H, FU Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. Journal of the American Chemical Society, 2017, 139(7): 2630–2638. doi: 10.1021/jacs.6b09645
|
[6] |
HAMDAN M, CHANDIRAN A K. Cs2PtI6 halide perovskite is stable to air, moisture, and extreme pH: application to photoelectrochemical solar water oxidation [J]. Angewandte Chemie International Edition, 2020, 59(37): 16033–16038. doi: 10.1002/anie.202000175
|
[7] |
PENG H P, XU L Y, SHENG Y L, et al. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance [J]. Small, 2021, 17(38): 2102149. doi: 10.1002/smll.202102149
|
[8] |
CHENG P F, ZHENG D Y, FENG L, et al. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission [J]. Journal of Energy Chemistry, 2022, 65: 600–604. doi: 10.1016/j.jechem.2021.06.033
|
[9] |
LIU S P, YANG B, CHEN J S, et al. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals [J]. Laser & Photonics Reviews, 2022, 16(2): 2100439. doi: 10.1002/LPOR.202100439
|
[10] |
WANG Z Y, CHEN Y, ZHANG C Y, et al. Electronic structure and optical properties of vacancy-ordered double perovskites Cs2PdBr x Cl6– x by first-principles calculation [J]. The Journal of Physical Chemistry C, 2020, 124(24): 13310–13315. doi: 10.1021/acs.jpcc.0c00137
|
[11] |
SAKAI N, HAGHIGHIRAD A A, FILIP M R, et al. Solution-processed cesium hexabromopalladate (Ⅳ), Cs2PdBr6, for optoelectronic applications [J]. Journal of the American Chemical Society, 2017, 139(17): 6030–6033. doi: 10.1021/jacs.6b13258
|
[12] |
MAHMOOD Q, HASSAN M, YOUSAF N, et al. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications [J]. Materials Science in Semiconductor Processing, 2022, 137: 106180. doi: 10.1016/j.mssp.2021.106180
|
[13] |
MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
|
[14] |
GUO S H, LI Y H, MAO Y H, et al. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating [J]. Science Advances, 2022, 8(44): eadd1984. doi: 10.1126/sciadv.add1984
|
[15] |
WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442
|
[16] |
WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D
|
[17] |
WANG L R, YAO P P, WANG F, et al. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6 [J]. Advanced Science, 2020, 7(6): 1902900. doi: 10.1002/advs.201902900
|
[18] |
姚盼盼, 王玲瑞, 王家祥, 等. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质 [J]. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
YAO P P, WANG L R, WANG J X, et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure [J]. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
|
[19] |
ABRIEL W, ZEHNDER E J. Vibronic coupling and dynamically distorted structures in hexahalogenotellurates (Ⅳ): low temperature X-ray diffraction (300–160 K) and FTIR-spectroscopic (300–5 K) results [J]. Zeitschrift für Naturforschung B, 2014, 42(10): 1273–1281. doi: 10.1515/znb-1987-1012
|
[20] |
BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
|
[21] |
FOLGUERAS M C, JIN J B, GAO M Y, et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X =Cl–, Br–, I–) single crystals [J]. The Journal of Physical Chemistry C, 2021, 125(45): 25126–25139. doi: 10.1021/acs.jpcc.1c08332
|
[22] |
郭宏伟, 刘然, 王玲瑞, 等. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究 [J]. 物理学报, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
GUO H W, LIU R, WANG L R, et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3 [J]. Acta Physica Sinica, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
|
[23] |
TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (B), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224
|
[24] |
MUREFAH M A, MALAK A A, BOUZGARROU S, et al. Study of optoelectronic and thermoelectric properties of double perovskites for renewable energy [J]. Physica Scripta, 2021, 96: 125828. doi: 10.1088/1402-4896/ac297a
|
[1] | GONG Lei, WANG Jingshu, ZHANG Junkai, CHEN Guangbo, ZHANG Han, WU Xiaoxin, HU Tingjing, CUI Hang. Size-Dependent Structural Phase Transition Behaviors of CaF2 Nanocrystals[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021102. doi: 10.11858/gywlxb.20210842 |
[2] | WANG Baoyun, XIAO Wansheng, SONG Maoshuang. Pressure-Induced Phase Transitions in δ-(Al,Fe)OOH[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061201. doi: 10.11858/gywlxb.20210765 |
[3] | XIAO Guanjun, ZOU Bo. Optical Tuning of Low-Dimensional Materials under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(1): 010201. doi: 10.11858/gywlxb.20200644 |
[4] | JIANG Hongmei, CAO Ye, YANG Songrui, MA Zhiwei, FU Ruijing, SHI Yue, XIAO Guanjun. Band Gap Modulation of Orthorhombic Cesium Lead Iodide Perovskite Nanorods under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020101. doi: 10.11858/gywlxb.20190711 |
[5] | DONG Bingshun, WANG Haikuo, TONG Feifei, HOU Zhiqiang, LI Zhen, LIU Tong, ZANG Jinhao, YANG Xigui. Fabrication of Submicron Tetragonal Polycrystalline ZrO2 by the Transformation of Micro Monoclinic ZrO2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 020104. doi: 10.11858/gywlxb.20190709 |
[6] | ZHU Xiang, WANG Yong-Qiang, WANG Zheng, CHENG Xue-Rui, YUAN Chao-Sheng, CHEN Zhen-Ping, SU Lei. Pressure-Induced Phase Transition of [Emim][PF6] and [Bmim][PF6] Studied by Raman Scattering[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 253-260. doi: 10.11858/gywlxb.2013.02.013 |
[7] | DING Ying-Chun, LIU Hai-Jun, JIANG Meng-Heng, CHEN Min, CHEN Yong-Ming. First-Principles Investigations on Structural Transformation and Electronic Properties of BeP2N4 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2012, 26(6): 674-680. doi: 10.11858/gywlxb.2012.06.012 |
[8] | WU Qi, PENG Fang, LI Qing-Hua, LEI Li, LI Rong-Qi. Pressure-Iduced Phase Transition of LiAl5O8[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 338-342. doi: 10.11858/gywlxb.2012.03.015 |
[9] | YANG Jie, LI Ming, LIN Peng, YU Dong-Li, HE Ju-Long. Study on High-Pressure Phase Transition of Hexagonal B-C-N Compound[J]. Chinese Journal of High Pressure Physics, 2011, 25(2): 123-127 . doi: 10.11858/gywlxb.2011.02.005 |
[10] | YANG Xiao-Cui, ZHAO Yu-Wei, GAO Zhong-Ming, LIU Xin, ZHANG Li-Xin, WANG Xiao-Ming, HAO Ai-Min. First-Principles Study of Structural Stabilities, Electronic and Optical Properties of CaF2 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2010, 24(3): 225-230 . doi: 10.11858/gywlxb.2010.03.011 |
[11] | WANG Shi-Xia, ZHENG Hai-Fei. The Research on Dissolvability and Phase Transition of Gypsum at High Pressure and Ambient Temperature[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 429-433 . doi: 10.11858/gywlxb.2008.04.016 |
[12] | WANG Lin, LIU Bing-Bing, WANG Hui, HOU Yuan-Yuan, AI Xiao-Lei, PAN Yue-Wu, CUI Qi-Liang, ZOU Guang-Tian, LIU Hong-Jiang, NI Yong-Hong, et al.. Pressure Induced Phase Transition of Nano Zinc Sulfide Shell[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 357-360 . doi: 10.11858/gywlxb.2005.04.013 |
[13] | BAO Zhong-Xing, XU Li-Wen, CHE Guang-Can, LIU Cui-Xia, CHEN Hong, WU Fei, ZHAO Zhong-Xian. Phase Transitions and Electronic Properties of La1.65Sr0.35CaCu2O4+Cly under High Pressure[J]. Chinese Journal of High Pressure Physics, 1999, 13(1): 30-33 . doi: 10.11858/gywlxb.1999.01.005 |
[14] | YANG Xiang-Dong, ZHANG Hong, HU Dong, JING Fu-Qian. Theoretical Studies of EOS and Phase Transitions of Carbon under High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 1997, 11(4): 250-253 . doi: 10.11858/gywlxb.1997.04.003 |
[15] | XU Kang, HE Hong-Liang, TAN Hua, LIU Jian-Jun. Effects of the Shock Temperature and Its Effect on Phase Transition of Anatase TiO2[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 27-31 . doi: 10.11858/gywlxb.1997.01.005 |
[16] | BAO Zhong-Xing, LIU Cui-Xia, HUANG Chao-En, LIU You-Chen, CHEN Hong, WU Fei. Electrical Properties and Phase Transitions in -BaB2O4 at High Pressure[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 46-49 . doi: 10.11858/gywlxb.1997.01.008 |
[17] | BAO Zhong-Xing, Schmidt V H, LIU Cui-Xia, YU Ting-Nan. Equations of State and Phase Transitions in KH2PO4 and (CH3NHCH2COOH)CaCl2 at High Pressure[J]. Chinese Journal of High Pressure Physics, 1995, 9(3): 208-212 . doi: 10.11858/gywlxb.1995.03.008 |
[18] | ZHANG Cheng-Xiang, WU Shao-Zeng, WU Shu-Yan, WU Xue-Yuan. Calculations of the High Pressure Phase Transition Point of NaCl, KCl and NaF Crystals[J]. Chinese Journal of High Pressure Physics, 1993, 7(3): 232-237 . doi: 10.11858/gywlxb.1993.03.011 |
[19] | LIU Zhen-Xian, CUI Qi-Liang, ZHAO Yong-Nian, ZOU Guang-Tian. Influence of Pressure-Transmitting Media on the Lattice Vibration and Phase Transition Pressure-High Pressure Raman Spectra Studies of -Bi2O3[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001 |
[20] | XIONG Da-He, B. C. Ming, M. H. Manghnani. High-Pressure Phase Transition and Constant-Temperature Compression of Caiclum Titanate Ore[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 1-9 . doi: 10.11858/gywlxb.1988.01.001 |
\rho /(\mathrm{k}\mathrm{g}\cdot{\mathrm{m}}^{-3}) | {C}_{\mathrm{L}0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | {C}_{0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | E/GPa | {C}_{\mathrm{T}0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | \nu |
7 970 | 5.777 | 4.555 | 194.77 | 3.077 | 0.302 |
No. | v/( \mathrm{m}\cdot{\mathrm{s}}^{-1}) | {\sigma }_{\mathrm{H}\mathrm{E}\mathrm{L}}/ \mathrm{G}\mathrm{P}\mathrm{a} | {\sigma }_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}}/\mathrm{G}\mathrm{P}\mathrm{a} | {\sigma }_{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{l}\mathrm{l}}/\mathrm{G}\mathrm{P}\mathrm{a} | D/ (\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | u/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | {D}_{\mathrm{P}\mathrm{T}}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | u_{\mathrm{p}2}/ (\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) |
1 | 660 | 3.147 5 | 5.824 7 | 4.820 | 0.306 | |||
2 | 880 | 3.058 6 | 5.067 9 | 5.041 | 0.315 | |||
3 | 928 | 3.357 4 | 6.540 7 | 5.088 | 0.335 | |||
4 | 1 026 | 3.339 8 | 13.50 | 7.394 6 | 4.886 | 0.342 | 3.447 | 0.474 |
5 | 1 127 | 3.591 1 | 14.55 | 8.198 5 | 5.277 | 0.340 | 3.938 | 0.530 |
6 | 1 231 | 3.443 5 | 14.22 | 8.175 8 | 5.274 | 0.333 | 4.182 | 0.589 |
7 | 1 245 | 3.374 9 | 13.79 | 6.075 5 | 5.106 | 0.329 | 4.264 | 0.597 |
8 | 1 431 | 3.155 5 | 14.54 | 6.266 5 | 5.028 | 0.352 | 4.673 | 0.699 |
\rho /(\mathrm{k}\mathrm{g}\cdot{\mathrm{m}}^{-3}) | {C}_{\mathrm{L}0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | {C}_{0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | E/GPa | {C}_{\mathrm{T}0}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | \nu |
7 970 | 5.777 | 4.555 | 194.77 | 3.077 | 0.302 |
No. | v/( \mathrm{m}\cdot{\mathrm{s}}^{-1}) | {\sigma }_{\mathrm{H}\mathrm{E}\mathrm{L}}/ \mathrm{G}\mathrm{P}\mathrm{a} | {\sigma }_{\mathrm{p}\mathrm{h}\mathrm{a}\mathrm{s}\mathrm{e}}/\mathrm{G}\mathrm{P}\mathrm{a} | {\sigma }_{\mathrm{s}\mathrm{p}\mathrm{a}\mathrm{l}\mathrm{l}}/\mathrm{G}\mathrm{P}\mathrm{a} | D/ (\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | u/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | {D}_{\mathrm{P}\mathrm{T}}/(\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) | u_{\mathrm{p}2}/ (\mathrm{k}\mathrm{m}\cdot{\mathrm{s}}^{-1}) |
1 | 660 | 3.147 5 | 5.824 7 | 4.820 | 0.306 | |||
2 | 880 | 3.058 6 | 5.067 9 | 5.041 | 0.315 | |||
3 | 928 | 3.357 4 | 6.540 7 | 5.088 | 0.335 | |||
4 | 1 026 | 3.339 8 | 13.50 | 7.394 6 | 4.886 | 0.342 | 3.447 | 0.474 |
5 | 1 127 | 3.591 1 | 14.55 | 8.198 5 | 5.277 | 0.340 | 3.938 | 0.530 |
6 | 1 231 | 3.443 5 | 14.22 | 8.175 8 | 5.274 | 0.333 | 4.182 | 0.589 |
7 | 1 245 | 3.374 9 | 13.79 | 6.075 5 | 5.106 | 0.329 | 4.264 | 0.597 |
8 | 1 431 | 3.155 5 | 14.54 | 6.266 5 | 5.028 | 0.352 | 4.673 | 0.699 |