Volume 37 Issue 5
Nov 2023
Turn off MathJax
Article Contents
WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708
Citation: WU Xueqian, WANG Lingrui, YUAN Yifang, MA Liang, GUO Haizhong. Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 050103. doi: 10.11858/gywlxb.20230708

Structural and Optical Properties of Telluride Double PerovskiteCs2TeBr6 under High Pressure

doi: 10.11858/gywlxb.20230708
  • Received Date: 10 Aug 2023
  • Rev Recd Date: 28 Aug 2023
  • Available Online: 09 Oct 2023
  • Issue Publish Date: 07 Nov 2023
  • Tellurium-based double perovskites offer the advantages of exceptional photoelectric properties, adjustable band gaps, and environmental friendliness, rendering them a promising class of light-absorbing materials. To further fine-tune the relevant attributes of these double perovskites, a comprehensive investigation of the structural-property relationship was conducted using a high-pressure diamond anvil cell (DAC) within in-situ high-pressure measurements. In this study, a representative tellurium-based double perovskite, Cs2TeBr6, was carefully investigated. The experimental findings reveal a notable structural transformation within the Cs2TeBr6 crystal lattice, transitioning from a cubic phase ($Fm \overline 3 m $) to a tetragonal phase (P4/mnc) in the pressure range of 0−51.0 GPa, which could be attributed to the tilting of the pressure-induced octahedron $\rm {TeBr}_6^{4-} $. Meanwhile, it is observed that the band gap of Cs2TeBr6 diminishes with increasing pressure under high pressure, exhibiting a turning point at approximately 14.0 GPa, coinciding with the onset of the structural phase transition. These findings contribute significantly to establishing the intricate correlation between the crystal structure and optical properties of Cs2TeBr6, thereby furnishing a valuable reference for precisely modulating the properties of tellurium-based perovskites.

     

  • loading
  • [1]
    FU Y P, ZHU H M, CHEN J, et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties [J]. Nature Reviews Materials, 2019, 4(3): 169–188. doi: 10.1038/s41578-019-0080-9
    [2]
    SU P D, LIU Y, ZHANG J K, et al. Pb-based perovskite solar cells and the underlying pollution behind clean energy: dynamic leaching of toxic substances from discarded perovskite solar cells [J]. The Journal of Physical Chemistry Letters, 2020, 11(8): 2812–2817. doi: 10.1021/acs.jpclett.0c00503
    [3]
    GHOSH S, SHANKAR H, KAR P. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field [J]. Materials Advances, 2022, 3(9): 3742–3765. doi: 10.1039/D2MA00071G
    [4]
    LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor [J]. Journal of the American Chemical Society, 2014, 136(43): 15379–15385. doi: 10.1021/ja508464w
    [5]
    ZHAO X G, YANG J H, FU Y H, et al. Design of lead-free inorganic halide perovskites for solar cells via cation-transmutation [J]. Journal of the American Chemical Society, 2017, 139(7): 2630–2638. doi: 10.1021/jacs.6b09645
    [6]
    HAMDAN M, CHANDIRAN A K. Cs2PtI6 halide perovskite is stable to air, moisture, and extreme pH: application to photoelectrochemical solar water oxidation [J]. Angewandte Chemie International Edition, 2020, 59(37): 16033–16038. doi: 10.1002/anie.202000175
    [7]
    PENG H P, XU L Y, SHENG Y L, et al. Highly conductive ligand-free Cs2PtBr6 perovskite nanocrystals with a narrow bandgap and efficient photoelectrochemical performance [J]. Small, 2021, 17(38): 2102149. doi: 10.1002/smll.202102149
    [8]
    CHENG P F, ZHENG D Y, FENG L, et al. Doped all-inorganic cesium zirconium halide perovskites with high-efficiency and tunable emission [J]. Journal of Energy Chemistry, 2022, 65: 600–604. doi: 10.1016/j.jechem.2021.06.033
    [9]
    LIU S P, YANG B, CHEN J S, et al. Colloidal synthesis and tunable multicolor emission of vacancy-ordered Cs2HfCl6 perovskite nanocrystals [J]. Laser & Photonics Reviews, 2022, 16(2): 2100439. doi: 10.1002/LPOR.202100439
    [10]
    WANG Z Y, CHEN Y, ZHANG C Y, et al. Electronic structure and optical properties of vacancy-ordered double perovskites Cs2PdBr x Cl6– x by first-principles calculation [J]. The Journal of Physical Chemistry C, 2020, 124(24): 13310–13315. doi: 10.1021/acs.jpcc.0c00137
    [11]
    SAKAI N, HAGHIGHIRAD A A, FILIP M R, et al. Solution-processed cesium hexabromopalladate (Ⅳ), Cs2PdBr6, for optoelectronic applications [J]. Journal of the American Chemical Society, 2017, 139(17): 6030–6033. doi: 10.1021/jacs.6b13258
    [12]
    MAHMOOD Q, HASSAN M, YOUSAF N, et al. Study of lead-free double perovskites halides Cs2TiCl6, and Cs2TiBr6 for optoelectronics, and thermoelectric applications [J]. Materials Science in Semiconductor Processing, 2022, 137: 106180. doi: 10.1016/j.mssp.2021.106180
    [13]
    MA Z W, LIU Z, LU S Y, et al. Pressure-induced emission of cesium lead halide perovskite nanocrystals [J]. Nature Communications, 2018, 9(1): 4506. doi: 10.1038/s41467-018-06840-8
    [14]
    GUO S H, LI Y H, MAO Y H, et al. Reconfiguring band-edge states and charge distribution of organic semiconductor-incorporated 2D perovskites via pressure gating [J]. Science Advances, 2022, 8(44): eadd1984. doi: 10.1126/sciadv.add1984
    [15]
    WANG J X, WANG L R, LI Y Q, et al. Pressure-induced metallization of lead-free halide double perovskite (NH4)2PtI6 [J]. Advanced Science, 2022, 9(28): 2203442. doi: 10.1002/advs.202203442
    [16]
    WANG J X, WANG L R, WANG F, et al. Pressure-induced bandgap engineering of lead-free halide double perovskite (NH4)2SnBr6 [J]. Physical Chemistry Chemical Physics, 2021, 23(35): 19308–19312. doi: 10.1039/D1CP03267D
    [17]
    WANG L R, YAO P P, WANG F, et al. Pressure-induced structural evolution and bandgap optimization of lead-free halide double perovskite (NH4)2SeBr6 [J]. Advanced Science, 2020, 7(6): 1902900. doi: 10.1002/advs.201902900
    [18]
    姚盼盼, 王玲瑞, 王家祥, 等. 高压下非铅双钙钛矿Cs2TeCl6的结构和光学性质 [J]. 物理学报, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988

    YAO P P, WANG L R, WANG J X, et al. Evolutions of structural and optical properties of lead-free double perovskite Cs2TeCl6 under high pressure [J]. Acta Physica Sinica, 2020, 69(21): 218801. doi: 10.7498/aps.69.20200988
    [19]
    ABRIEL W, ZEHNDER E J. Vibronic coupling and dynamically distorted structures in hexahalogenotellurates (Ⅳ): low temperature X-ray diffraction (300–160 K) and FTIR-spectroscopic (300–5 K) results [J]. Zeitschrift für Naturforschung B, 2014, 42(10): 1273–1281. doi: 10.1515/znb-1987-1012
    [20]
    BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 °K [J]. Journal of Geophysical Research: Solid Earth, 1978, 83(B3): 1257–1268. doi: 10.1029/JB083iB03p01257
    [21]
    FOLGUERAS M C, JIN J B, GAO M Y, et al. Lattice dynamics and optoelectronic properties of vacancy-ordered double perovskite Cs2TeX6 (X =Cl, Br, I) single crystals [J]. The Journal of Physical Chemistry C, 2021, 125(45): 25126–25139. doi: 10.1021/acs.jpcc.1c08332
    [22]
    郭宏伟, 刘然, 王玲瑞, 等. 高压下有机-无机杂化钙钛矿CH3NH3PbI3的结构及光学性质研究 [J]. 物理学报, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701

    GUO H W, LIU R, WANG L R, et al. High-pressure structural and optical properties of organic-inorganic hybrid perovskite CH3NH3PbI3 [J]. Acta Physica Sinica, 2017, 63(3): 030701. doi: 10.7498/aps.66.030701
    [23]
    TAUC J, GRIGOROVICI R, VANCU A. Optical properties and electronic structure of amorphous germanium [J]. Physica Status Solidi (B), 1966, 15(2): 627–637. doi: 10.1002/pssb.19660150224
    [24]
    MUREFAH M A, MALAK A A, BOUZGARROU S, et al. Study of optoelectronic and thermoelectric properties of double perovskites for renewable energy [J]. Physica Scripta, 2021, 96: 125828. doi: 10.1088/1402-4896/ac297a
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views(307) PDF downloads(133) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return