Citation: | LIU Hu, LI Quan, LV Zhaowen, WANG Changjian, WEI Zhen, SUN Haocheng. Experimental Study on Re-initiation of 2H2+O2+nAr Premixed Gas by Cylindrical Obstacle[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 055202. doi: 10.11858/gywlxb.20230672 |
[1] |
姜宗林, 滕宏辉, 刘云峰. 气相爆轰物理的若干研究进展 [J]. 力学进展, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202
JIANG Z L, TENG H H, LIU Y F. Some research progress on gaseous detonation physics [J]. Advances in Mechanics, 2012, 42(2): 129–140. doi: 10.6052/1000-0992-2012-2-20120202
|
[2] |
张静雯, 彭澳, 陈先锋, 等. 扰动作用下爆轰形成机理 [J]. 高压物理学报, 2022, 36(6): 062303.
ZHANG J W, PENG A, CHEN X F, et al. Mechanisms of detonation initiation under the effect of perturbation [J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 062303.
|
[3] |
韩文虎, 张博, 王成. 气相爆轰波起爆与传播机理研究进展 [J]. 爆炸与冲击, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
HAN W H, ZHANG B, WANG C. Progress in studying mechanisms of initiation and propagation for gaseous detonations [J]. Explosion and Shock Waves, 2021, 41(12): 121402. doi: 10.11883/bzycj-2021-0398
|
[4] |
王昌建, 徐胜利, 费立森. 气相爆轰波绕射流场显示研究 [J]. 爆炸与冲击, 2006, 26(1): 27–32. doi: 10.3321/j.issn:1001-1455.2006.01.005
WANG C J, XU S L, FEI L S. Flow field visualization for gaseous detonation diffractionexperiments [J]. Explosion and Shock Waves, 2006, 26(1): 27–32. doi: 10.3321/j.issn:1001-1455.2006.01.005
|
[5] |
SHI X Y, PAN J F, JIANG C, et al. Effect of obstacles on the detonation diffraction and subsequent re-initiation [J]. International Journal of Hydrogen Energy, 2022, 47(10): 6936–6954. doi: 10.1016/j.ijhydene.2021.12.026
|
[6] |
马秋菊, 邵俊程, 王众山, 等. 氢气比例和点火能量对CH4-H2混合气体爆炸强度影响的实验研究 [J]. 高压物理学报, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
MA Q J, SHAO J C, WANG Z S, et al. Experimental study of the hydrogen proportion and ignition energy effects on the CH4-H2 mixture explosion intensity [J]. Chinese Journal of High Pressure Physics, 2020, 34(1): 015201. doi: 10.11858/gywlxb.20190803
|
[7] |
倪靖, 潘剑锋, 姜超, 等. 掺氢比对甲烷-氧气爆轰特性的影响 [J]. 爆炸与冲击, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
NI J, PAN J F, JIANG C, et al. Effects of hydrogen-blending ratio on detonation characteristics of premixed methane-oxygen gas [J]. Explosion and Shock Waves, 2020, 40(4): 042102. doi: 10.11883/bzycj-2019-0237
|
[8] |
赵焕娟, 刘婧, 周冬雷, 等. 多孔材料对氢气爆轰的抑制作用 [J]. 化工学报, 2023, 74(2): 968–976.
ZHAO H J, LIU J, ZHOU D L, et al. Inhibition effect of porous materials on hydrogen detonation [J]. CIESC Journal, 2023, 74(2): 968–976.
|
[9] |
雷明川, 喻健良, 闫兴清, 等. 惰性气体对氢气/空气爆轰传播的抑制作用 [J]. 化工学报, 2022, 73(10): 4754–4761.
LEI M C, YU J L, YAN X Q, et al. Inhibition of hydrogen/air detonation propagation by inert gases [J]. CIESC Journal, 2022, 73(10): 4754–4761.
|
[10] |
PENG H, LIU W, LIU S, et al. Experimental investigations on ethylene-air continuous rotating detonation wave in the hollow chamber with laval nozzle [J]. Acta Astronaut, 2018, 151: 137–145. doi: 10.1016/j.actaastro.2018.06.025
|
[11] |
贺顺江, 任会兰, 李健. 环形通道内爆轰波的起爆机制 [J]. 高压物理学报, 2023, 37(1): 015202.
HE S J, REN H L, LI J. Initiation mechanism of detonation wave in an annular channel [J]. Chinese Journal of High Pressure Physics, 2023, 37(1): 015202.
|
[12] |
李红宾, 李建玲, 熊姹, 等. 超音速来流中爆轰波衍射和二次起爆过程研究 [J]. 爆炸与冲击, 2019, 39(4): 041401.
LI H B, LI J L, XIONG C, et al. Numerical investigation on detonation diffraction and re-initiation processes in a supersonic inflow [J]. Explosion and Shock Waves, 2019, 39(4): 041401.
|
[13] |
刘曦, 李健. 楔面角度扰动对斜爆轰结构的影响研究 [J]. 北京理工大学学报, 2022, 42(9): 891–899.
LIU X, LI J. Influence of wedge angle disturbance on the structure of oblique detonation [J]. Transactions of Beijing Institute of Technology, 2022, 42(9): 891–899.
|
[14] |
栾溟弋, 武克文, 张树杰, 等. 连续爆轰发动机研究进展 [J]. 宇航总体技术, 2022, 6(3): 10–20.
LUAN M Y, WU K W, ZHANG S J, et al. Progress in rotating detonation engine [J]. Astronautical Systems Engineering Technology, 2022, 6(3): 10–20.
|
[15] |
尚甲豪, 胡国暾, 汪球, 等. 高速弹丸诱导斜爆轰激波结构实验研究 [J]. 力学学报, 2023, 55(2): 309–317. doi: 10.6052/0459-1879-22-536
SHANG J H, HU G T, WANG Q, et al. Experiment investigation of oblique detonation wave structure induced by hypersonic projectiles [J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(2): 309–317. doi: 10.6052/0459-1879-22-536
|
[16] |
韩信, 刘云峰, 张子健, 等. 提高高马赫数超燃冲压发动机推力的理论方法 [J]. 力学学报, 2022, 54(3): 633–643. doi: 10.6052/0459-1879-21-350
HAN X, LIU Y F, ZHANG Z J, et al. The theoretical method to increase the thrust of high Mach number scramjets [J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(3): 633–643. doi: 10.6052/0459-1879-21-350
|
[17] |
PINTGEN F, SHEPHERD J E. Detonation diffraction in gases [J]. Combustion and Flame, 2009, 156(3): 665–677. doi: 10.1016/j.combustflame.2008.09.008
|
[18] |
LEE J H S. On the measure of the relative detonation hazards of gaseous fuel-oxygen and air mixtures [J]. Symposium (International) on Combustion, 1979, 17(1): 1269–1280. doi: 10.1016/S0082-0784(79)80120-4
|
[19] |
OHYAGI S, OBARA T, HOSHI S, et al. Diffraction and re-initiation of detonations behind a backward-facing step [J]. Shock Waves, 2002, 12(3): 221–226. doi: 10.1007/s00193-002-0156-z
|
[20] |
BEDAREV I A, TEMERBEKOV V M. Modeling of attenuation and suppression of cellular detonation in the hydrogen-air mixture by circular obstacles [J]. International Journal of Hydrogen Energy, 2022, 47(90): 38455–38467. doi: 10.1016/j.ijhydene.2022.08.307
|
[21] |
SAIF M, WANG W T, PEKALSKI A, et al. Chapman-Jouguet deflagrations and their transition to detonation [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2771–2779. doi: 10.1016/j.proci.2016.07.122
|
[22] |
RADULESCU M, SHARPE G, BRADLEY D. A universal parameter quantifying explosion hazards, detonability and hot spot formation: the χ number [C]//Proceedings of the Seventh International Seminar Fire and Explosion Hazards. University of Maryland, College Park, USA. Singapore: Research Publishing, 2013: 617–626.
|
[23] |
YANG T, HE Q, NING J, et al. Experimental and numerical studies on detonation failure and re-initiation behind a half-cylinder [J]. International Journal of Hydrogen Energy, 2022, 47(25): 12711–12725. doi: 10.1016/j.ijhydene.2022.01.230
|
[24] |
景天雨, 任会兰, 李健. 气相爆轰波马赫反射过驱动马赫杆演化过程的实验研究 [J]. 中国科学: 技术科学, 2021, 51(4): 446–458. doi: 10.1360/SST-2020-0427
JING T Y, REN H L, LI J. Transition of an overdriven Mach stem in the Mach reflection of detonations in H2/O2 mixtures [J]. Scientia Sinica Technologica, 2021, 51(4): 446–458. doi: 10.1360/SST-2020-0427
|
[25] |
RAM O, GEVA M, SADOT O. High spatial and temporal resolution study of shock wave reflection over a coupled convex-concave cylindrical surface [J]. Journal of Fluid Mechanics, 2015, 768: 219–239. doi: 10.1017/jfm.2015.80
|
[26] |
GUO C M, ZHANG D L, XIE W. The Mach reflection of a detonation based on soot track measurements [J]. Combustion and Flame, 2001, 127(3): 2051–2058. doi: 10.1016/S0010-2180(01)00307-8
|
[27] |
牛淑贞, 杨鹏飞, 杨旸, 等. 来流速度突变对斜爆轰反射波系驻定特性影响的数值研究 [J]. 中国科学: 物理学 力学 天文学, 2023, 53(3): 164–176.
NIU S Z, YANG P F, YANG Y, et al. Numerical study of the effect of a sudden change in flow velocity on the stability of an oblique detonation reflected wave system [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2023, 53(3): 164–176.
|
[28] |
LV Y, IHME M. Computational analysis of re-ignition and re-initiation mechanisms of quenched detonation waves behind a backward facing step [J]. Proceedings of the Combustion Institute. 2015, 35(2): 1963–1972.
|
[29] |
YUAN X Q, ZHOU J, LIU S J, et al. Diffraction of cellular detonation wave over a cylindrical convex wall [J]. Acta Astronautica, 2020, 169: 94–107. doi: 10.1016/j.actaastro.2019.12.039
|
[30] |
VASIL’EV A A, VASIL’EV V A. Diffraction of waves in combustible mixtures [J]. Journal of Engineering Physics and Thermophysics, 2010, 83(6): 1178–1196. doi: 10.1007/s10891-010-0441-0
|
[31] |
王鲁庆, 马宏昊, 王波, 等. 氢气/甲烷-空气爆轰波在含环形障碍物圆管内传播的试验研究 [J]. 高压物理学报, 2018, 32(3): 123–129. doi: 10.11858/gywlxb.20170687
WANG L Q, MA H H, WANG B, et al. Detonation propagation in hydrogen/methane-air mixtures in a round tube filled with orifice plates [J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 123–129. doi: 10.11858/gywlxb.20170687
|
[32] |
LI Q, KELLENBERGER M, CICCARELLI G. Geometric influence on the propagation of the quasi-detonations in a stoichiometric H2-O2 mixture [J]. Fuel, 2020, 269: 117396. doi: 10.1016/j.fuel.2020.117396
|
[33] |
范菊梦, 沈婷, 刘丹丹, 等. 浓度梯度对火焰加速和爆燃转爆轰的影响 [J]. 工程热物理学报, 2023, 44(1): 266–273.
FAN J M, SHEN T, LIU D D, et al. Effects of composition gradient on flame acceleration and transition to detonation [J]. Journal of Engineering Thermophysics, 2023, 44(1): 266–273.
|
[34] |
GOODWIN D G, MOFFAT H K, SPETH R L. Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes [CP]. (2015-08-13)[2023-05-30]. http://www.cantera.org.
|
[35] |
张治. 管道内衬边界对氢气爆轰抑制机理研究 [D]. 合肥: 合肥工业大学, 2021: 69–72.
ZHANG Z. Study of hydrogen detonation suppression mechanism by inner boundary of channel [D]. Hefei: Hefei University of Technology, 2021: 69–72.
|
[36] |
GRONDIN J S, LEE J H S. Experimental observation of the onset of detonation downstream of a perforated plate [J]. Shock Waves, 2010, 20: 381–386. doi: 10.1007/s00193-010-0267-x
|