Citation: | YUAN Congxiang, LIU Zhixiang, YANG Xiaocong, GUO Jinfeng, WAN Chuanchuan, XIONG Shuai, LIU Weijun. Strength Prediction of Cemented Paste Backfill Body Based on WOA-XGBoost Model[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668 |
[1] |
李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262.
LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262.
|
[2] |
DU K, LIU M H, ZHOU J, et al. Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR [J]. Mining, Metallurgy & Exploration, 2022, 39(2): 433–452.
|
[3] |
QI C C, FOURIE A. Cemented paste backfill for mineral tailings management: review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. doi: 10.1016/j.mineng.2019.106025
|
[4] |
李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题 [J]. 中国有色金属学报, 2011, 21(10): 2551–2563.
LI X B, YAO J R, GONG F Q. Dynamic problems in deep exploitation of hard rock metal mines [J]. The Chinese Journal of Nonferrous Mentals, 2011, 21(10): 2551–2563.
|
[5] |
韩斌, 王贤来, 肖卫国. 基于多元非线性回归的井下采场充填体强度预测及评价 [J]. 采矿与安全工程学报, 2012, 29(5): 714–718.
HAN B, WANG X L, XIAO W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis [J]. Journal of Mining and Safety Engineering, 2012, 29(5): 714–718.
|
[6] |
付自国, 乔登攀, 郭忠林, 等. 超细尾砂胶结充填体强度计算模型及应用 [J]. 岩土力学, 2018, 39(9): 3147–3156.
FU Z G, QIAO D P, GUO Z L, et al. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. Rock and Soil Mechanics, 2018, 39(9): 3147–3156.
|
[7] |
魏晓明, 郭利杰, 周小龙, 等. 高阶段胶结充填体全时序应力演化规律及预测模型研究 [J]. 岩土力学, 2020, 41(11): 3613–3620.
WEI X M, GUO L J, ZHOU X L, et al. Full sequence stress evolution law and prediction model of high stage cemented backfill [J]. Rock and Soil Mechanics, 2020, 41(11): 3613–3620.
|
[8] |
OREJARENA L, FALL M. The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill [J]. Bulletin of Engineering Geology and the Environment, 2010, 69(4): 659–670. doi: 10.1007/s10064-010-0326-7
|
[9] |
刘志祥, 周士霖, 郭永乐. 磷石膏充填体强度GA-BP神经网络预测模型 [J]. 矿冶工程, 2011, 31(6): 1–5.
LIU Z X, ZHOU S L, GUO Y L. GA-BP neural network prediction model for strength of phosphogypsum backfill [J]. Mining and Metallurgical Engineering, 2011, 31(6): 1–5.
|
[10] |
QI C C, TANG X L, DONG X J, et al. Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill [J]. Minerals Engineering, 2019, 133: 69–79. doi: 10.1016/j.mineng.2019.01.004
|
[11] |
谭文侃, 胡南燕, 叶义成, 等. 基于四大集成学习的岩爆烈度分级预测 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3250–3259.
TAN W K, HU N Y, YE Y C, et al. Rockburst intensity classification prediction based on four ensemble learning [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3250–3259.
|
[12] |
佟大威, 杨传会, 余佳, 等. 基于XGBoost-PSO的混凝土重力坝体型多目标优化设计 [J]. 河海大学学报 (自然科学版), 2023, 51(3): 91–98.
TONG D W, YANG C H, YU J, et al. Multi-objective shape optimization of concrete gravity dam based on XGBoost-PSO [J]. Journal of Hohai University (Natural Sciences), 2023, 51(3): 91–98.
|
[13] |
DE-PRADO-GIL J, PALENCIA C, SILVA-MONTEIRO N, et al. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models [J]. Case Studies in Construction Materials, 2022, 16: e1046.
|
[14] |
QI C C, FOURIE A, CHEN Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill [J]. Journal of Cleaner Production, 2018, 183: 566–578. doi: 10.1016/j.jclepro.2018.02.154
|
[15] |
XIONG S, LIU Z X, MIN C D, et al. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm [J]. Materials, 2023, 16(1): 308.
|
[16] |
LU X, ZHOU W, DING X H, et al. Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill [J]. IEEE Access, 2019, 7: 72125–72133. doi: 10.1109/ACCESS.2019.2918177
|
[17] |
FU X L, WU H L, ZHANG R, et al. Heavy metals containment by vertical cutoff walls backfilled with novel reactive magnesium-activated slag-bentonite-sand: membrane and diffusion behavior [J]. Journal of Cleaner Production, 2021, 328: 129623. doi: 10.1016/j.jclepro.2021.129623
|
[18] |
李夕兵, 王丽红, 刘大勇. 基于海底开采的高倍线强阻力充填技术 [J]. 科技导报, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005
LI X B, WANG L H, LIU D Y. Tilling technology with high filling times line and strong resistance for the undersea mining [J]. Science & Technology Review, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005
|
[19] |
MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
[20] |
SONG Y, LI H W, XU P F, et al. A method of intrusion detection based on WOA-XGBoost algorithm [J]. Discrete Dynamics in Nature and Society, 2022, 2022: 1–9.
|
[21] |
史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测 [J]. 储能科学与技术, 2022, 11(10): 3354–3363.
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354–3363.
|
[22] |
ZHANG M, WANG Z J, WANG L, et al. Automated lung cancer classification based on the tissue dielectric property [C]//Proceedings of the Biannual World Automation Congres. Taipei, China: Institute of Electrical and Electronics Engineers, 2021.
|
[23] |
ZHOU J, ZHU S L, QIU Y G, et al. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm [J]. Acta Geotechnica, 2022, 17(4): 1343–1366. doi: 10.1007/s11440-022-01450-7
|
[24] |
DEV V A, EDEN M R. Formation lithology classification using scalable gradient boosted decision trees [J]. Computers and Chemical Engineering, 2019, 128: 392–404.
|
[1] | WANG Duoliang, LI Hongwei, LIANG Hao, LI Shiying, WU Yanmeng, ZHAO Jing, LI Chunzhi, XIAO Zhongliang. Damage Process of Double Base Propellant Grooved Blasting on Granite Slab[J]. Chinese Journal of High Pressure Physics, 2024, 38(4): 045302. doi: 10.11858/gywlxb.20240711 |
[2] | QIU Peng, YUE Zhongwen. Stress Distribution and Propagation Mechanism of Crack Tip in Directional Fracturing Blasting under the Influence of Free Boundary[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 054104. doi: 10.11858/gywlxb.20240799 |
[3] | JI Zhe, YUE Wenhao, SU Hong, GONG Yue, YAN Zhengtuan, LIU Buqing, CHEN Guodong, HAN Yujian. Study on the Behavior of Blasting Crack Propagation under Different Crack Widths[J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064107. doi: 10.11858/gywlxb.20240733 |
[4] | CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, MENG Jiale, PENG Lei, WU Xiao. Optimization and Experimental Study of Pre-Splitting Blasting Parameters in a Certain Open-Pit Mine[J]. Chinese Journal of High Pressure Physics, 2023, 37(6): 065301. doi: 10.11858/gywlxb.20230692 |
[5] | ZHU Zihui, GUO Jiaqi, SUN Feiyue, ZHANG Hengyuan. Experimental Study on Acoustic Emission and Crack Propagation of Fissured Sandstone with Different Moisture States[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054103. doi: 10.11858/gywlxb.20230665 |
[6] | JIA Shixu, ZHAO Tingting, WU Pei, LI Zhiqiang, WANG Zhiyong. Influence of Interfacial Transition Zone on Crack Propagation Process in Concrete[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044207. doi: 10.11858/gywlxb.20230606 |
[7] | CHEN Xiaolin, ZHANG Zhiyu, WANG Kai, PENG Lei. Relation between Crack Propagation and Decoupling Charging Coefficient in Deep Rock Blasting[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054203. doi: 10.11858/gywlxb.20230649 |
[8] | LI Zhenzhen, YU Jianxin, YANG Xiaolin, CHU Huaibao, WANG Jinxing, LIU Huanchun. Crack Propagation Regularity of Hydraulic Blasting in Deep Coal Seam[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 035301. doi: 10.11858/gywlxb.20210912 |
[9] | WANG Mufei, LI Zhiqiang. Numerical Simulation of Crack Propagation and Damage Behavior of Glass Plates under Impact Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(5): 054203. doi: 10.11858/gywlxb.20220558 |
[10] | LIANG Rui, LI Shengrong, BAO Juan, ZHOU Wenhai. Blasting Damage and Energy Characteristics of Rock Mass under High in-Situ Stress[J]. Chinese Journal of High Pressure Physics, 2022, 36(6): 064202. doi: 10.11858/gywlxb.20220599 |
[11] | WANG Haoyang, WEI Ying, QIAO Li. Simulation of Dynamic Crack Propagation in Superconducting Nb3Sn at Extreme Low Temperature[J]. Chinese Journal of High Pressure Physics, 2022, 36(3): 034201. doi: 10.11858/gywlxb.20210884 |
[12] | LI Hongwei, LEI Zhan, JIANG Xiangyang, LIU Wei, HE Zhiwei, ZHANG Binbin. Numerical Analysis of Impact of Shot Hole Spacing on Crack Growth in Rock[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 044103. doi: 10.11858/gywlxb.20180683 |
[13] | CUI Nai-Fu, CHEN Peng-Wan, ZHOU Qiang, ZHOU Bing-Bing. Shock Induced Reaction Process of Ti-Si Reactive Powder[J]. Chinese Journal of High Pressure Physics, 2017, 31(4): 478-485. doi: 10.11858/gywlxb.2017.04.017 |
[14] | LIU Ning-Wen, LI Jian, ZHAO Xin-Cai, XIAO Zheng-Fei, LI Ze-Ren. An Ultra-High-Speed Electro-Optical Framing Camera and Its Application[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 37-41. doi: 10.11858/gywlxb.2016.01.006 |
[15] | PAN Jian-Hua, CHEN Xue-Dong, JIANG Heng, WANG Xiu-Xi. Loading Rate Effect on Crack Resistance Curves and Their Correlations[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 109-116. doi: 10.11858/gywlxb.2015.02.004 |
[16] | MU Chao-Min, PAN Fei. Numerical Study on the Damage of the Coal under Blasting Loads Coupled with Geostatic Stress[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 403-410. doi: 10.11858/gywlxb.2013.03.014 |
[17] | ZHAO Ji-Bo, TAN Duo-Wang, LI Jin-He, ZHANG Guang-Sheng, ZENG Hua-Long. Primary Research on Side Pressure of Cylindrical TNT at Underwater Explosive Close-Field[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 323-328 . doi: 10.11858/gywlxb.2008.03.018 |
[18] | ZHANG Peng, BAI Shu-Lin, ZHOU Wen-Ling. Study on Microstructures and Damage Evolution of a Substitute of Polymer Bonded Explosive[J]. Chinese Journal of High Pressure Physics, 2003, 17(4): 319-325 . doi: 10.11858/gywlxb.2003.04.013 |
[19] | ZHAO Fang-Fang, LUO Jing-Run, TIAN Chang-Jin, JIN Zhou-Geng, HE Ying-Bo. The Crack Growth Process of Particulate Filled Polymer Monitored by Acoustic Emission[J]. Chinese Journal of High Pressure Physics, 2000, 14(3): 235-240 . doi: 10.11858/gywlxb.2000.03.014 |
[20] | WANG Ke-Gang, DONG Lian-Ke, LONG Qi-Wei. Gauge Field Theory of the Breaking Criterion of Materials Subjected to Intensive Shock Loading[J]. Chinese Journal of High Pressure Physics, 1987, 1(2): 110-120 . doi: 10.11858/gywlxb.1987.02.003 |