Citation: | YUAN Congxiang, LIU Zhixiang, YANG Xiaocong, GUO Jinfeng, WAN Chuanchuan, XIONG Shuai, LIU Weijun. Strength Prediction of Cemented Paste Backfill Body Based on WOA-XGBoost Model[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054201. doi: 10.11858/gywlxb.20230668 |
[1] |
李夕兵, 周健, 王少锋, 等. 深部固体资源开采评述与探索 [J]. 中国有色金属学报, 2017, 27(6): 1236–1262.
LI X B, ZHOU J, WANG S F, et al. Review and practice of deep mining for solid mineral resources [J]. The Chinese Journal of Nonferrous Metals, 2017, 27(6): 1236–1262.
|
[2] |
DU K, LIU M H, ZHOU J, et al. Investigating the slurry fluidity and strength characteristics of cemented backfill and strength prediction models by developing hybrid GA-SVR and PSO-SVR [J]. Mining, Metallurgy & Exploration, 2022, 39(2): 433–452.
|
[3] |
QI C C, FOURIE A. Cemented paste backfill for mineral tailings management: review and future perspectives [J]. Minerals Engineering, 2019, 144: 106025. doi: 10.1016/j.mineng.2019.106025
|
[4] |
李夕兵, 姚金蕊, 宫凤强. 硬岩金属矿山深部开采中的动力学问题 [J]. 中国有色金属学报, 2011, 21(10): 2551–2563.
LI X B, YAO J R, GONG F Q. Dynamic problems in deep exploitation of hard rock metal mines [J]. The Chinese Journal of Nonferrous Mentals, 2011, 21(10): 2551–2563.
|
[5] |
韩斌, 王贤来, 肖卫国. 基于多元非线性回归的井下采场充填体强度预测及评价 [J]. 采矿与安全工程学报, 2012, 29(5): 714–718.
HAN B, WANG X L, XIAO W G. Estimation and evaluation of backfill strength in underground stope based on multivariate nonlinear regression analysis [J]. Journal of Mining and Safety Engineering, 2012, 29(5): 714–718.
|
[6] |
付自国, 乔登攀, 郭忠林, 等. 超细尾砂胶结充填体强度计算模型及应用 [J]. 岩土力学, 2018, 39(9): 3147–3156.
FU Z G, QIAO D P, GUO Z L, et al. A model for calculating strength of ultra-fine tailings cemented hydraulic fill and its application [J]. Rock and Soil Mechanics, 2018, 39(9): 3147–3156.
|
[7] |
魏晓明, 郭利杰, 周小龙, 等. 高阶段胶结充填体全时序应力演化规律及预测模型研究 [J]. 岩土力学, 2020, 41(11): 3613–3620.
WEI X M, GUO L J, ZHOU X L, et al. Full sequence stress evolution law and prediction model of high stage cemented backfill [J]. Rock and Soil Mechanics, 2020, 41(11): 3613–3620.
|
[8] |
OREJARENA L, FALL M. The use of artificial neural networks to predict the effect of sulphate attack on the strength of cemented paste backfill [J]. Bulletin of Engineering Geology and the Environment, 2010, 69(4): 659–670. doi: 10.1007/s10064-010-0326-7
|
[9] |
刘志祥, 周士霖, 郭永乐. 磷石膏充填体强度GA-BP神经网络预测模型 [J]. 矿冶工程, 2011, 31(6): 1–5.
LIU Z X, ZHOU S L, GUO Y L. GA-BP neural network prediction model for strength of phosphogypsum backfill [J]. Mining and Metallurgical Engineering, 2011, 31(6): 1–5.
|
[10] |
QI C C, TANG X L, DONG X J, et al. Towards intelligent mining for backfill: a genetic programming-based method for strength forecasting of cemented paste backfill [J]. Minerals Engineering, 2019, 133: 69–79. doi: 10.1016/j.mineng.2019.01.004
|
[11] |
谭文侃, 胡南燕, 叶义成, 等. 基于四大集成学习的岩爆烈度分级预测 [J]. 岩石力学与工程学报, 2022, 41(Suppl 2): 3250–3259.
TAN W K, HU N Y, YE Y C, et al. Rockburst intensity classification prediction based on four ensemble learning [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(Suppl 2): 3250–3259.
|
[12] |
佟大威, 杨传会, 余佳, 等. 基于XGBoost-PSO的混凝土重力坝体型多目标优化设计 [J]. 河海大学学报 (自然科学版), 2023, 51(3): 91–98.
TONG D W, YANG C H, YU J, et al. Multi-objective shape optimization of concrete gravity dam based on XGBoost-PSO [J]. Journal of Hohai University (Natural Sciences), 2023, 51(3): 91–98.
|
[13] |
DE-PRADO-GIL J, PALENCIA C, SILVA-MONTEIRO N, et al. To predict the compressive strength of self compacting concrete with recycled aggregates utilizing ensemble machine learning models [J]. Case Studies in Construction Materials, 2022, 16: e1046.
|
[14] |
QI C C, FOURIE A, CHEN Q S, et al. A strength prediction model using artificial intelligence for recycling waste tailings as cemented paste backfill [J]. Journal of Cleaner Production, 2018, 183: 566–578. doi: 10.1016/j.jclepro.2018.02.154
|
[15] |
XIONG S, LIU Z X, MIN C D, et al. Compressive strength prediction of cemented backfill containing phosphate tailings using extreme gradient boosting optimized by whale optimization algorithm [J]. Materials, 2023, 16(1): 308.
|
[16] |
LU X, ZHOU W, DING X H, et al. Ensemble learning regression for estimating unconfined compressive strength of cemented paste backfill [J]. IEEE Access, 2019, 7: 72125–72133. doi: 10.1109/ACCESS.2019.2918177
|
[17] |
FU X L, WU H L, ZHANG R, et al. Heavy metals containment by vertical cutoff walls backfilled with novel reactive magnesium-activated slag-bentonite-sand: membrane and diffusion behavior [J]. Journal of Cleaner Production, 2021, 328: 129623. doi: 10.1016/j.jclepro.2021.129623
|
[18] |
李夕兵, 王丽红, 刘大勇. 基于海底开采的高倍线强阻力充填技术 [J]. 科技导报, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005
LI X B, WANG L H, LIU D Y. Tilling technology with high filling times line and strong resistance for the undersea mining [J]. Science & Technology Review, 2014, 32(3): 39–43. doi: 10.3981/j.issn.1000-7857.2014.03.005
|
[19] |
MIRJALILI S, LEWIS A. The whale optimization algorithm [J]. Advances in Engineering Software, 2016, 95: 51–67. doi: 10.1016/j.advengsoft.2016.01.008
|
[20] |
SONG Y, LI H W, XU P F, et al. A method of intrusion detection based on WOA-XGBoost algorithm [J]. Discrete Dynamics in Nature and Society, 2022, 2022: 1–9.
|
[21] |
史永胜, 李锦, 任嘉睿, 等. 基于WOA-XGBoost的锂离子电池剩余使用寿命预测 [J]. 储能科学与技术, 2022, 11(10): 3354–3363.
SHI Y S, LI J, REN J R, et al. Prediction of residual service life of lithium-ion battery using WOA-XGBoost [J]. Energy Storage Science and Technology, 2022, 11(10): 3354–3363.
|
[22] |
ZHANG M, WANG Z J, WANG L, et al. Automated lung cancer classification based on the tissue dielectric property [C]//Proceedings of the Biannual World Automation Congres. Taipei, China: Institute of Electrical and Electronics Engineers, 2021.
|
[23] |
ZHOU J, ZHU S L, QIU Y G, et al. Predicting tunnel squeezing using support vector machine optimized by whale optimization algorithm [J]. Acta Geotechnica, 2022, 17(4): 1343–1366. doi: 10.1007/s11440-022-01450-7
|
[24] |
DEV V A, EDEN M R. Formation lithology classification using scalable gradient boosted decision trees [J]. Computers and Chemical Engineering, 2019, 128: 392–404.
|