Citation: | CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663 |
[1] |
BROOKES C A, BROOKES E J. Diamond in perspective: a review of mechanical properties of natural diamond [J]. Diamond and Related Materials, 1991, 1(1): 13–17. doi: 10.1016/0925-9635(91)90006-V
|
[2] |
徐波, 田永君. 纳米孪晶超硬材料的高压合成 [J]. 物理学报, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
XU B, TIAN Y J. High pressure synthesis of nanotwinned ultrahard materials [J]. Acta Physica Sinica, 2017, 66(3): 036201. doi: 10.7498/aps.66.036201
|
[3] |
ZHANG X X, WANG Y C, LV J, et al. First-principles structural design of superhard materials [J]. The Journal of Chemical Physics, 2013, 138(11): 114101. doi: 10.1063/1.4794424
|
[4] |
ŠIMŮNEK A, VACKÁŘ J. Hardness of covalent and ionic crystals: first-principle calculations [J]. Physical Review Letters, 2006, 96(8): 085501. doi: 10.1103/PhysRevLett.96.085501
|
[5] |
IRIFUNE T, KURIO A, SAKAMOTO S, et al. Ultrahard polycrystalline diamond from graphite [J]. Nature, 2003, 421(6923): 599–600. doi: 10.1038/421599b
|
[6] |
HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
|
[7] |
HALL E O. The deformation and ageing of mild steel: Ⅲ discussion of results [J]. Proceedings of the Physical Society: Section B, 1951, 64(9): 747–753. doi: 10.1088/0370-1301/64/9/303
|
[8] |
PETCH N J. The orientation relationships between cementite and α-iron [J]. Acta Crystallographica, 1953, 6(1): 96. doi: 10.1107/S0365110X53000260
|
[9] |
TSE J S, KLUG D D, GAO F M. Hardness of nanocrystalline diamonds [J]. Physical Review B, 2006, 73(14): 140102. doi: 10.1103/PhysRevB.73.140102
|
[10] |
YIP S. Mapping plasticity [J]. Nature Materials, 2004, 3(1): 11–12. doi: 10.1038/nmat105
|
[11] |
SUMIYA H, YUSA H, INOUE T, et al. Conditions and mechanism of formation of nano-polycrystalline diamonds on direct transformation from graphite and non-graphitic carbon at high pressure and temperature [J]. High Pressure Research, 2006, 26(2): 63–69. doi: 10.1080/08957950600765863
|
[12] |
SOLOPOVA N A, DUBROVINSKAIA N, DUBROVINSKY L. Synthesis of nanocrystalline diamond from glassy carbon balls [J]. Journal of Crystal Growth, 2015, 412: 54–59. doi: 10.1016/j.jcrysgro.2014.11.041
|
[13] |
JAWORSKA L, SZUTKOWSKA M, MORGIEL J, et al. Ti3SiC2 as a bonding phase in diamond composites [J]. Journal of Materials Science Letters, 2001, 20(19): 1783–1786. doi: 10.1023/A:1012535100330
|
[14] |
YUSA H. Nanocrystalline diamond directly transformed from carbon nanotubes under high pressure [J]. Diamond and Related Materials, 2002, 11(1): 87–91. doi: 10.1016/S0925-9635(01)00532-5
|
[15] |
SUMIYA H, IRIFUNE T. Microstructure and mechanical properties of high-hardness nano-polycrystalline diamonds [J]. SEI Technical Review, 2008, 66: 85–91.
|
[16] |
LU L, SHEN Y F, CHEN X H, et al. Ultrahigh strength and high electrical conductivity in copper [J]. Science, 2004, 304(5669): 422–426. doi: 10.1126/science.109290
|
[17] |
LU L, CHEN X H, HUANG X X, et al. Revealing the maximum strength in nanotwinned copper [J]. Science, 2009, 323(5914): 607–610. doi: 10.1126/science.1167641
|
[18] |
SUMIYA H, IRIFUNE T, KURIO A, et al. Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure [J]. Journal of Materials Science, 2004, 39(2): 445–450. doi: 10.1023/B:JMSC.0000011496.15996.44
|
[19] |
SCANDOLO S, BERNASCONI M, CHIAROTTI G L, et al. Pressure-induced transformation path of graphite to diamond [J]. Physical Review Letters, 1995, 74(20): 4015–4018. doi: 10.1103/PhysRevLett.74.4015
|
[20] |
ZHU S C, YAN X Z, LIU J, et al. A revisited mechanism of the graphite-to-diamond transition at high temperature [J]. Matter, 2020, 3(3): 864–878. doi: 10.1016/j.matt.2020.05.013
|
[21] |
MUNDY C J, CURIONI A, GOLDMAN N, et al. Ultrafast transformation of graphite to diamond: an ab initio study of graphite under shock compression [J]. Journal of Chemical Physics, 2008, 128(18): 184701. doi: 10.1063/1.2913201
|
[22] |
PINEAU N. Molecular dynamics simulations of shock compressed graphite [J]. The Journal of Physical Chemistry C, 2013, 117(24): 12778–12786. doi: 10.1021/jp403568m
|
[23] |
SUN H F, JIANG X Y, DAI R, et al. Understanding the mechanism of shock wave induced graphite-to-diamond phase transition [J]. Materialia, 2022, 24: 101487. doi: 10.1016/j.mtla.2022.101487
|
[24] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
|
[25] |
STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
|
[26] |
XIE H X, YIN F X, YU T, et al. Mechanism for direct graphite-to-diamond phase transition [J]. Scientific Reports, 2014, 4(1): 5930. doi: 10.1038/srep05930
|
[27] |
YUE Y H, GAO Y F, HU W T, et al. Hierarchically structured diamond composite with exceptional toughness [J]. Nature, 2020, 582(7812): 370–374. doi: 10.1038/s41586-020-2361-2
|
[28] |
ERSKINE D J, NELLIS W J. Shock-induced martensitic transformation of highly oriented graphite to diamond [J]. Journal of Applied Physics, 1992, 71(10): 4882–4886. doi: 10.1063/1.350633
|
[29] |
KRAUS D, RAVASIO A, GAUTHIER M, et al. Nanosecond formation of diamond and lonsdaleite by shock compression of graphite [J]. Nature Communications, 2016, 7(1): 10970. doi: 10.1038/ncomms10970
|
[30] |
TURNEAURE S J, SHARMA S M, VOLZ T J, et al. Transformation of shock-compressed graphite to hexagonal diamond in nanoseconds [J]. Science Advances, 2017, 3(10): eaao3561. doi: 10.1126/sciadv.aao3561
|
[31] |
SUNG J. Graphite→diamond transition under high pressure: a kinetics approach [J]. Journal of Materials Science, 2000, 35(23): 6041–6054. doi: 10.1023/A:1026779802263
|
[32] |
IRIFUNE T, KURIO A, SAKAMOTO S, et al. Formation of pure polycrystalline diamond by direct conversion of graphite at high pressure and high temperature [J]. Physics of the Earth and Planetary Interiors, 2004, 143/144: 593–600. doi: 10.1016/j.pepi.2003.06.004
|