
Citation: | LIANG Ce, KAN Qianhua, LIANG Wenjia, MA Guolong, PENG Fang, HONG Shiming, LIU Xiuru. Experimental Investigation of the Glass Transition Temperature in Amorphous Selenium under High Pressures[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 051101. doi: 10.11858/gywlxb.20230654 |
稀土六硼化物LaB6具有较低的逸出功和低蒸发率等优异的电子发射性能,同时还具有熔点高、化学稳定性强、硬度高等特点,因此自Lafferty发现LaB6的热发射性能以来一直是电子材料及器件领域的研究热点[1-3]。人们对LaB6晶体材料的制备和表征及其多元硼化物开展了较多的研究工作,例如:张宁等[4]通过悬浮区熔法制备了高质量LaB6单晶体;包黎红等[5]制备了La0.6Ce0.4B6材料,硬度达到2.31 GPa,1873 K下的最高发射电流密度达40.7 A/cm2;刘洪亮等[6]通过测试发现,LaB6晶体材料(100)晶面具有最佳的发射性能,最大发射电流密度在1773 K时可达40.4 A/cm2。然而,高致密度的LaB6晶体材料的烧结制备较为困难(致密度较低,80%~92%),所得材料的力学性能较差[7]。当前,关于LaB6晶体材料力学性能的理论研究报道较少,为此本研究基于密度泛函理论,结合Birch-Murnaghan物态方程,系统研究LaB6晶体材料的弹性性质及其他力学性能,以期为LaB6的深入研究和应用提供参考。
计算中,将芯电子及核视为原子核,用Vanderbilt超软势近似其对外层电子的作用,外层电子设为La(5s25p65d16s2)、B(2s2 2p1),电子波函数采用平面波基矢组[8]。电子交换关联项采用广义梯度近似法(General Gradient Approximation,GGA)中的PBE(Perdew Burke Ernzerhof)泛函近似。首先对晶格结构进行充分弛豫,在此过程中固定晶体的对称性,允许原子在3个方向上弛豫。考虑到La d电子的在位库仑相互作用,计算时将其作用项设置为2.5 eV。计算弹性常数时,每个原子的能量收敛精度设置为2×10–6 eV,最大受力收敛精度设置为0.06 eV/nm;应力-应变计算中,原子最大位移的收敛精度设置为2×10–5 nm;电子结构计算中,电子平面波矢组基矢截止能量设为240 eV,布里渊区k点的自动生成采用Monkhorst-Pack法,k点网格密度为4×4×4。
根据胡克定律,固体材料在弹性形变范围内所受的应力与应变之间符合
S=Cε(1) |
(1) |
式中:S为应力,
[S1S2S3S4S5S6]=[C11C12C13C14C15C16C21C22C23C24C25C26C31C32C33C34C35C36C41C42C43C44C45C46C51C52C53C54C55C56C61C62C63C64C65C66][ε1ε2ε3ε4ε5ε6](2) |
(2) |
由于晶体具有结构对称性(见图1),因此弹性常数张量矩阵可化为一个具有21个独立分量的矩阵[8],考虑到LaB6为立方晶系,空间群为
计算分析得到的LaB6晶体材料的晶格参数列于表1。从表1中可以看出,初始结构经过充分弛豫之后,计算得到的晶格参数与实验值之间的相对误差均小于3%,说明计算分析过程所用参数较为合理。
Method | a/nm | b/nm | c/nm | α/(°) | β/(°) | γ/(°) |
Experiment | 0.415 49 | 0.415 49 | 0.415 49 | 90 | 90 | 90 |
Calculation | 0.420 205 | 0.420 205 | 0.420 205 | 90 | 90 | 90 |
通过计算得到LaB6晶体材料的弹性常数参数C11、C12和C44分别为436.92、22.37和47.64 GPa,
C11>0,C44>0,C11>|C12|,C11+2C12>0 |
(3) |
表明本研究所用晶格结构为力学稳定的晶体结构。
分别采用Voigt法、Reuss法和Hill法,根据以下公式,计算LaB6晶体材料的体弹性模量和剪切弹性模量
BV=(C11+2C12)/3 |
(4) |
GV=(C11−C12+3C44)/5 |
(5) |
BR=(C11+2C12)/3 |
(6) |
GR=5(C11−C12)C44/[4C44+3(C11−C12)] |
(7) |
BH=(BR+BV)/2 |
(8) |
GH=(GR+GV)/2 |
(9) |
式中:B为体弹性模量,G为剪切弹性模量,下标V、R、H分别表示Voigt法、Reuss法和Hill法。计算结果列于表2,可见LaB6晶体具有较大的体弹性模量。由于LaB6晶体在a、b、c方向上具有各向同性,因此采用Voigt方法和Reuss方法计算所得体弹性模量具有相同的数值。
BV/GPa | BR/GPa | BH/GPa | GV/GPa | GR/GPa | GH/GPa |
160.55 | 160.55 | 160.55 | 111.49 | 68.85 | 90.17 |
杨氏模量E可用于衡量固体材料的刚度,其值越大,刚性越强。泊松比
采用以下公式计算LaB6晶体材料的杨氏模量E、泊松比
E=9BG/(3B+G) |
(10) |
γ=(3B−2G)/(6B+2G) |
(11) |
AB=(BV−BR)/(BV+BR) |
(12) |
AG=(GV−GR)/(GV+GR) |
(13) |
H=0.92λ−1.137G0.708 |
(14) |
λ=B/G |
(15) |
表3列出了计算分析结果,可以看出:LaB6晶体材料的杨氏模量为227.85 GPa,远大于一些金属的杨氏模量,与钢材的杨氏模量接近,表明LaB6不易发生弹性形变,刚性较强;其泊松比为0.26,表明LaB6具有一定的脆性;体剪弹性模量上限值的比值λ为1.44,小于1.75,与泊松比计算分析结果吻合;体弹性模量各向异性因子AB=0,剪切弹性模量各向异性因子AG=0.24,表明LaB6的体弹性具有各向同性,而剪切弹性具有一定的各向异性;理论硬度H达到11.56 GPa,表明LaB6抵抗剪切形变的能力较强。
E/GPa | γ | λ | AB | AG | H/GPa | vl/(km·s–1) | vt/(km·s–1) | vm/(km·s–1) |
227.85 | 0.26 | 1.44 | 0 | 0.24 | 11.56 | 7.72 | 4.38 | 4.87 |
采用以下公式[13-14]计算LaB6晶体材料的纵波弹性波速vl、剪切弹性波速vt和平均弹性波速vm
vl=√(B+43G)1ρ,vt=√Gρ,vm=[13(2v3t+1v3l)]−13 |
(16) |
计算结果如表3所示。LaB6晶体材料的3支弹性波中,有1支纵波和2支横波。从表3可以看出,LaB6晶体的纵波弹性波速(7.72 km/s)较大,剪切弹性波速(4.38 km/s)相对较小,平均波速达到4.87 km/s。在LaB6晶体材料的长波极限,声学波的纵波支速度较大,横波支速度相对较小,表明原子相对运动的振动波速较大。
计算得到的LaB6晶体材料的能带结构和分态密度如图2所示。从图2中可以看出,LaB6具有较窄的带隙,带隙宽度为0.20 eV,费米能级穿过价带,表明LaB6呈金属性。从分态密度图可以看出,曲线具有多个峰值,表明LaB6内部电子具有较强的局域性,这也是稀土La化合物特有的性质。结合能带结构和分态密度可以看出,LaB6材料价带顶的能带由p、d和s电子形成,导带底的能带由p和d电子形成,其中p态电子对价带顶和导带底的形成起最重要的作用。计算分析得到的LaB6晶体材料各轨道的电荷转移分布情况如表4所示。可见,La的s轨道和p轨道的电子转移至d轨道和B原子上,B得到La的电子,其s轨道的电子转移至p轨道,因此La呈2.53价而B呈–0.42价,表明La和B之间具有较强的共价键成分。La和B的这种结合也表明LaB6具有较高的体弹性模量、杨氏模量和硬度,同时其离子键成分使其具有一定的脆性。
Atom | Charge distribution/e | |||
s orbital | p orbital | d orbital | Total charge | |
B | 0.88 | 2.54 | 0.00 | –0.42 |
La | 1.50 | 5.46 | 1.51 | 2.53 |
基于密度泛函理论和Birch-Murnaghan物态方程,系统分析了LaB6晶体材料的弹性常数参数、体弹性模量、剪切弹性模量和力学性能。结果表明:LaB6晶体材料具有较大的
[1] |
汪卫华. 非晶态物质的本质和特性 [J]. 物理学进展, 2013, 33(5): 177–351.
WANG W H. The nature and properties of amorphous matter [J]. Progress in Physics, 2013, 33(5): 177–351.
|
[2] |
毛自力, 陈红, 王文魁. 高压下Zr60Ni20Al20金属玻璃形成过程的研究 [J]. 高压物理学报, 1992, 6(3): 212–216. doi: 10.11858/gywlxb.1992.03.008
MAO Z L, CHEN H, WANG W K. Formation of bulk metallic glass Zr60Ni20Al20 by high pressure quenching [J]. Chinese Journal of High Pressure Physics, 1992, 6(3): 212–216. doi: 10.11858/gywlxb.1992.03.008
|
[3] |
HUANG Y N, WANG C J, RIANDE E. Superdipole liquid scenario for the dielectric primary relaxation in supercooled polar liquids [J]. The Journal of Chemical Physics, 2005, 122(14): 144502. doi: 10.1063/1.1872773
|
[4] |
CAPRION D, SCHOBER H R. Influence of the quench rate and the pressure on the glass transition temperature in selenium [J]. The Journal of Chemical Physics, 2002, 117(6): 2814–2818. doi: 10.1063/1.1492797
|
[5] |
DROZD-RZOSKA A. Pressure dependence of the glass temperature in supercooled liquids [J]. Physical Review E, 2005, 72(4): 041505. doi: 10.1103/PhysRevE.72.041505
|
[6] |
DONG Z, FRIED J R. Statistical thermodynamics of the glass transition: 1. effect of pressure and diluent concentration [J]. Computational and Theoretical Polymer Science, 1997, 7(1): 53–64. doi: 10.1016/S1089-3156(97)00008-1
|
[7] |
VLEESHOUWERS S, NIES E. Stochastic theory for the glassy state [J]. Colloid and Polymer Science, 1996, 274(2): 105–111. doi: 10.1007/BF00663442
|
[8] |
LI G, KING JR H E, OLIVER W F, et al. Pressure and temperature dependence of glass-transition dynamics in a “Fragile” glass former [J]. Physical Review Letters, 1995, 74(12): 2280–2283. doi: 10.1103/PhysRevLett.74.2280
|
[9] |
KUTCHEROV V, BÄCKSTRÖM G, ANISIMOV M, et al. Glass transition in crude oil under pressure detected by the transient hot-wire method [J]. International Journal of Thermophysics, 1993, 14(1): 91–100. doi: 10.1007/BF00522664
|
[10] |
KUTCHEROV V, LUNDIN A, ROSS R G, et al. Glass transition in viscous crude oils under pressure [J]. International Journal of Thermophysics, 1994, 15(1): 165–176. doi: 10.1007/BF01439253
|
[11] |
WILLIAMS E, ANGELL C A. Pressure dependence of the glass transition temperature in ionic liquids and solutions. evidence against free volume theories [J]. The Journal of Physical Chemistry, 1977, 81(3): 232–237. doi: 10.1021/j100518a010
|
[12] |
RZOSKA S J. New challenges for the pressure evolution of the glass temperature [J]. Frontiers in Materials, 2017, 4: 33. doi: 10.3389/fmats.2017.00033
|
[13] |
SANCHEZ I C. Towards a theory of viscosity for glass-forming liquids [J]. Journal of Applied Physics, 1974, 45(10): 4204–4215. doi: 10.1063/1.1663037
|
[14] |
JOINER B A, THOMPSON J C. Glass transition temperature shift under pressure for some semiconducting glasses [J]. Journal of Non-Crystalline Solids, 1976, 21(2): 215–224. doi: 10.1016/0022-3093(76)90042-9
|
[15] |
MI Y L, ZHENG S X. A new study of glass transition of polymers by high pressure DSC [J]. Polymer, 1998, 39(16): 3709–3712. doi: 10.1016/S0032-3861(97)10357-3
|
[16] |
SCHNEIDER H A, RUDOLF B, KARLOU K, et al. Pressure influence on the glass transition of polymers and polymer blends [J]. Polymer Bulletin, 1994, 32(5): 645–652.
|
[17] |
TORATANI H, TAKAMIZAWA K. Effect of pressure on the relation between glass transition temperature and molecular weight for monodispersed polystyrenes [J]. Polymer Journal, 1994, 26(7): 797–803. doi: 10.1295/polymj.26.797
|
[18] |
EISENBERG A. The multi-dimensional glass transition [J]. The Journal of Physical Chemistry, 1963, 67(6): 1333–1336. doi: 10.1021/j100800a040
|
[19] |
YE F, LU K. Pressure effect on polymorphous crystallization kinetics in amorphous selenium [J]. Acta Materialia, 1998, 46(16): 5965–5971. doi: 10.1016/S1359-6454(98)00240-7
|
[20] |
HE Z, LIU X R, ZHANG D D, et al. Pressure effect on thermal-induced crystallization of amorphous selenium up to 5.5 GPa [J]. Solid State Communications, 2014, 197: 30–33. doi: 10.1016/j.ssc.2014.08.001
|
[21] |
BRIDGMAN P W. Compressions and polymorphic transitions of seventeen elements to 100 000 kg/cm2 [J]. Physical Review, 1941, 60(4): 351–354. doi: 10.1103/PhysRev.60.351
|
[22] |
HE Z, WANG Z G, ZHU H Y, et al. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy [J]. Applied Physics Letters, 2014, 105(1): 011901. doi: 10.1063/1.4887005
|
[23] |
LIU H Z, WANG L H, XIAO X H, et al. Anomalous high-pressure behavior of amorphous selenium from synchrotron X-ray diffraction and microtomography [J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(36): 13229–13234.
|
[24] |
TANAKA K. Structural studies of amorphous Se under pressure [J]. Physical Review B, 1990, 42(17): 11245–11251. doi: 10.1103/PhysRevB.42.11245
|
[25] |
GUPTA M C, RUOFF A L. Transition in amorphous selenium under high pressure [J]. Journal of Applied Physics, 1978, 49(12): 5880–5884. doi: 10.1063/1.324552
|
[26] |
BERG J I, SIMHA R. Pressure-volume-temperature relations in liquid and glassy selenium [J]. Journal of Non-Crystalline Solids, 1976, 22(1): 1–22. doi: 10.1016/0022-3093(76)90002-8
|
[27] |
FORD P J, SAUNDERS G A, LAMBSON E F, et al. Investigation of the pressure dependence of the elastic constants of amorphous selenium in the vicinity of the glass-transition [J]. Philosophical Magazine Letters, 1988, 57(3): 201–206. doi: 10.1080/09500838808203772
|
[28] |
TANAKA K. Configurational and structural models for photodarkening in glassy chalcogenides [J]. Japanese Journal of Applied Physics, 1986, 25(6R): 779–786. doi: 10.1143/JJAP.25.779
|
[29] |
YAN X Z, REN X T, HE D W. Pressure calibration in solid pressure transmitting medium in large volume press [J]. Review of Scientific Instruments, 2016, 87(12): 125006. doi: 10.1063/1.4973448
|
[30] |
王路, 王菊, 李娜娜, 等. 快速加压引起的硒熔体结晶行为 [J]. 物理学报, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
WANG L, WANG J, LI N N, et al. Mechanism of rapid compression-induced melt crystallization in selenium [J]. Acta Physica Sinica, 2021, 70(15): 156201. doi: 10.7498/aps.70.20210253
|
[1] | WANG Yichuan. Raman Scattering of Grossular-Andradite Solid Solution[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040101. doi: 10.11858/gywlxb.20200512 |
[2] | JIANG Feng, ZHAO Huifang, XIE Yafei, JIANG Changguo, TAN Dayong, XIAO Wansheng. High Pressure Raman Spectroscopy and X-ray Diffraction of CuS2[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 040104. doi: 10.11858/gywlxb.20200509 |
[3] | SONG Haipeng, LIU Yungui, LI Xiang, JIN Shuyu, WANG Xinyu, WU Xiang. High-Pressure Raman Spectroscopic Study of Hydroxylbastnäsite-(Ce)[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060105. doi: 10.11858/gywlxb.20190847 |
[4] | LIU Changcai, HU Haiying, DAI Lidong, SUN Wenqing. Experimental Study on the Effect of Pressure on the Electrical Conductivity of Pure and Iron Sulfide-Bearing Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 051201. doi: 10.11858/gywlxb.20180674 |
[5] | TIAN Haoran, XU Liangxu, LI Nana, ZHANG Qian, LIN Junfu, LIU Jin. High-Pressure Electrical Conductivity of Single-Crystal Olivine[J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 060103. doi: 10.11858/gywlxb.20190775 |
[6] | HE Yunhong, TIAN Yu, ZHAO Huifang, JIANG Feng, TAN Dayong, XIAO Wansheng. Raman Evidences for Phase Transition of Sodium Perchlorate at High Pressure[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 041201. doi: 10.11858/gywlxb.20180543 |
[7] | HAN Xi, WU Ye, HUANG Haijun. High Pressure Raman Investigation of BiFeO3[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051202. doi: 10.11858/gywlxb.20170698 |
[8] | XIE Mengyu, LU Yafei, ZOU Xinyu, DENG Liwei. Water Diffusion in Olivine under Lunar Mantle Conditions[J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 011201. doi: 10.11858/gywlxb.20170645 |
[9] | TIAN Yu, LIU Xue-Ting, HE Yun-Hong, ZHAO Hui-Fang, JIANG Feng, TAN Da-Yong, XIAO Wan-Sheng. Raman Evidences of Chemical Reaction of NaCl-O2 System at High Pressure and High Temperature[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 692-697. doi: 10.11858/gywlxb.2017.06.003 |
[10] | LIU Xiu-Ru, WANG Jun-Long, CHEN Li-Ying, HONG Shi-Ming. Applications of Rapid Compression Technique within Milliseconds in Materials Science[J]. Chinese Journal of High Pressure Physics, 2017, 31(3): 223-230. doi: 10.11858/gywlxb.2017.03.003 |
[11] | LI Dong-Fei, ZHANG Ke-Wei, LI Zuo-Wei, LIU Cheng-Zhi, GUO Rui, SUN Cheng-Lin, LI Hai-Bo. High Pressure Raman Investigation of Td-WTe2 Bulk Single Crystal[J]. Chinese Journal of High Pressure Physics, 2016, 30(5): 369-374. doi: 10.11858/gywlxb.2016.05.004 |
[12] | QIN Fei, WANG Ying, WU Xiang, QIN Shan, LI Hui, LI Xiao-Dong, YANG Ke. Compressibility of Natural Olivine Single-Crystals[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 20-26. doi: 10.11858/gywlxb.2016.01.003 |
[13] | YUAN Zhen, ZHANG Shao-Peng, JIN Chang-Qing, WANG Xiao-Hui. Raman Spectroscopy Studies of Nanocrystalline Lead Zirconate Titanate as Functions of High Pressure[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 95-98. doi: 10.11858/gywlxb.2015.02.002 |
[14] | FAN Da-Wei, XU Jin-Gui, WEI Shu-Yi, CHEN Zhi-Qiang, XIE Hong-Sen. In-Situ High-Pressure Synchrotron X-Ray Diffraction of Natural Epidote[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 257-261. doi: 10.11858/gywlxb.2014.03.001 |
[15] | CHEN Yuan-Fu, LIU Fu-Sheng, ZHANG Ning-Chao, ZHAO Bei-Jing, WANG Jun-Guo, ZHANG Ming-Jian, XUE Xue-Dong. Measurement System of Transient Raman Spectroscopy and Its Application to Benzene under Shock Compression[J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 505-510. doi: 10.11858/gywlxb.2013.04.006 |
[16] | MA Yan-Mei, PENG Gang, LI Min, LI Xue-Fei, GAO Ling-Ling, CUI Qi-Liang, ZOU Guang-Tian. X-Ray Diffraction Investigation of Pyrope under Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(3): 305-308 . doi: 10.11858/gywlxb.2008.03.014 |
[17] | GAO Ling-Ling, MA Yan-Mei, LIU Dan, HAO Jian, JIN Yun-Xia, WANG Feng, WANG Qiu-Shi, ZOU Guang-Tian, CUI Qi-Liang. Raman Spectra Characterization of Cycloheptane under High Pressure[J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 192-196 . doi: 10.11858/gywlxb.2008.02.013 |
[18] | QU Qing-Ming, ZHENG Hai-Fei. Research on Using Raman Spectra of Carborundum Anvil as Pressure Sensor at Pressure of 0.1~3 000 MPa[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 332-336 . doi: 10.11858/gywlxb.2007.03.020 |
[19] | ZHANG Hong, XIAO Wan-Sheng, TAN Da-Yong, LUO Chong-Ju, LI Yan-Chun, LIU Jing. Investigation of Phase Transitions of ZrO2 under High-Pressure and High-Temperature Conditions by Raman Spectroscopy[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 264-268 . doi: 10.11858/gywlxb.2007.03.008 |
[20] | ZHAO Jin, ZHENG Hai-Fei. Research on Raman Spectra of Calcite at Pressure of 0.1~800 MPa[J]. Chinese Journal of High Pressure Physics, 2003, 17(3): 226-229 . doi: 10.11858/gywlxb.2003.03.012 |
Method | a/nm | b/nm | c/nm | α/(°) | β/(°) | γ/(°) |
Experiment | 0.415 49 | 0.415 49 | 0.415 49 | 90 | 90 | 90 |
Calculation | 0.420 205 | 0.420 205 | 0.420 205 | 90 | 90 | 90 |
BV/GPa | BR/GPa | BH/GPa | GV/GPa | GR/GPa | GH/GPa |
160.55 | 160.55 | 160.55 | 111.49 | 68.85 | 90.17 |
E/GPa | γ | λ | AB | AG | H/GPa | vl/(km·s–1) | vt/(km·s–1) | vm/(km·s–1) |
227.85 | 0.26 | 1.44 | 0 | 0.24 | 11.56 | 7.72 | 4.38 | 4.87 |
Atom | Charge distribution/e | |||
s orbital | p orbital | d orbital | Total charge | |
B | 0.88 | 2.54 | 0.00 | –0.42 |
La | 1.50 | 5.46 | 1.51 | 2.53 |
Method | a/nm | b/nm | c/nm | α/(°) | β/(°) | γ/(°) |
Experiment | 0.415 49 | 0.415 49 | 0.415 49 | 90 | 90 | 90 |
Calculation | 0.420 205 | 0.420 205 | 0.420 205 | 90 | 90 | 90 |
BV/GPa | BR/GPa | BH/GPa | GV/GPa | GR/GPa | GH/GPa |
160.55 | 160.55 | 160.55 | 111.49 | 68.85 | 90.17 |
E/GPa | γ | λ | AB | AG | H/GPa | vl/(km·s–1) | vt/(km·s–1) | vm/(km·s–1) |
227.85 | 0.26 | 1.44 | 0 | 0.24 | 11.56 | 7.72 | 4.38 | 4.87 |
Atom | Charge distribution/e | |||
s orbital | p orbital | d orbital | Total charge | |
B | 0.88 | 2.54 | 0.00 | –0.42 |
La | 1.50 | 5.46 | 1.51 | 2.53 |