Citation: | GUAN Hailu, ZHANG Xiaoqiong, SHU Hongji, WANG Zhihua. Dynamic Tensile Properties and Failure Mechanism of Glass Fiber Reinforced Polycarbonate Composite[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044101. doi: 10.11858/gywlxb.20230648 |
[1] |
CHANG S H, HWANG J R, DOONG J L. Optimization of the injection molding process of short glass fiber reinforced polycarbonate composites using grey relational analysis [J]. Journal of Materials Processing Technology, 2000, 97(1/2/3): 186–193.
|
[2] |
AHMED A, RAHMAN Z, OU Y F, et al. A review on the tensile behavior of fiber-reinforced polymer composites under varying strain rates and temperatures [J]. Construction and Building Materials, 2021, 294: 123565. doi: 10.1016/j.conbuildmat.2021.123565
|
[3] |
HAZER S, AYTAC A. Effect of glass fiber reinforcement on the thermal, mechanical, and flame retardancy behavior of poly(lactic acid)/polycarbonate blend [J]. Polymer Composites, 2020, 41(4): 1481–1489. doi: 10.1002/pc.25471
|
[4] |
GRAZIANO A, DIAS O A T, PETEL O. High-strain-rate mechanical performance of particle- and fiber-reinforced polymer composites measured with split Hopkinson bar: a review [J]. Polymer Composites, 2021, 42(10): 4932–4948. doi: 10.1002/pc.26200
|
[5] |
尹洪峰, 薛飞彪, 魏英, 等. 连续玻璃纤维和玻璃微珠共增强尼龙6复合材料的抗冲击性能 [J]. 复合材料学报, 2023, 40(2): 761–770. doi: 10.13801/j.cnki.fhclxb.20220330.001
YIN H F, XUE F B, WEI Y, et al. Impact resistance of continuous glass fiber and glass bead co-reinforced nylon 6 composites [J]. Acta Materiae Compositae Sinica, 2023, 40(2): 761–770. doi: 10.13801/j.cnki.fhclxb.20220330.001
|
[6] |
HOUSHYAR S, SHANKS R A, HODZIC A. The effect of fiber concentration on mechanical and thermal properties of fiber-reinforced polypropylene composites [J]. Journal of Applied Polymer Science, 2005, 96(6): 2260–2272. doi: 10.1002/app.20874
|
[7] |
JAWALI N D, SIDDARAMAIAH, SIDDESHWARAPPA B, et al. Polycarbonate/short glass fiber reinforced composites-physico-mechanical, morphological and FEM analysis [J]. Journal of Reinforced Plastics and Composites, 2008, 27(3): 313–319. doi: 10.1177/0731684407083951
|
[8] |
李益俊, 辛勇. 玻纤含量对玻纤增强聚碳酸酯微结构成型及力学性能的影响 [J]. 高分子材料科学与工程, 2019, 35(5): 27–31. doi: 10.16865/j.cnki.1000-7555.2019.0126
LI Y J, XIN Y. Effect of glass fiber content on microstructure and mechanical properties of glass fiber reinforced polycarbonate [J]. Polymer Materials Science & Engineering, 2019, 35(5): 27–31. doi: 10.16865/j.cnki.1000-7555.2019.0126
|
[9] |
FU S Y, LAUKE B, MÄDER E, et al. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites [J]. Composites Part A: Applied Science and Manufacturing, 2000, 31(10): 1117–1125. doi: 10.1016/S1359-835X(00)00068-3
|
[10] |
MORTAZAVIAN S, FATEMI A. Effects of fiber orientation and anisotropy on tensile strength and elastic modulus of short fiber reinforced polymer composites [J]. Composites Part B: Engineering, 2015, 72: 116–129. doi: 10.1016/j.compositesb.2014.11.041
|
[11] |
SATO N, KURAUCHI T, SATO S, et al. Microfailure behaviour of randomly dispersed short fibre reinforced thermoplastic composites obtained by direct SEM observation [J]. Journal of Materials Science, 1991, 26(14): 3891–3898. doi: 10.1007/BF01184987
|
[12] |
SONG J H, LIM J K. Fatigue crack growth behavior and fiber orientation of glass fiber reinforced polycarbonate polymer composites [J]. Metals and Materials International, 2007, 13(5): 371–377. doi: 10.1007/BF03027870
|
[13] |
CAO K, WANG Y, WANG Y. Effects of strain rate and temperature on the tension behavior of polycarbonate [J]. Materials & Design, 2012, 38: 53–58.
|
[14] |
CAO K, MA X Z, ZHANG B S, et al. Tensile behavior of polycarbonate over a wide range of strain rates [J]. Materials Science and Engineering: A, 2010, 527(16/17): 4056–4061.
|
[15] |
MORTAZAVIAN S, FATEMI A. Tensile behavior and modeling of short fiber-reinforced polymer composites including temperature and strain rate effects [J]. Journal of Thermoplastic Composite Materials, 2017, 30(10): 1414–1437. doi: 10.1177/0892705716632863
|
[16] |
MELIN L G, ASP L E. Effects of strain rate on transverse tension properties of a carbon/epoxy composite: studied by moiré photography [J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(3): 305–316. doi: 10.1016/S1359-835X(98)00123-7
|
[17] |
SHIRINBAYAN M, FITOUSSI J, KHERADMAND F, et al. Coupling effect of strain rate and temperature on tensile damage mechanism of polyphenylene sulfide reinforced by glass fiber (PPS/GF30) [J]. Journal of Thermoplastic Composite Materials, 2022, 35(11): 1994–2008. doi: 10.1177/0892705720944229
|
[18] |
WANG Z, ZHOU Y X, MALLICK P K. Effects of temperature and strain rate on the tensile behavior of short fiber reinforced polyamide-6 [J]. Polymer Composites, 2002, 23(5): 858–871. doi: 10.1002/pc.10484
|
[19] |
ZHANG M H, JIANG B Y, CHEN C, et al. The effect of temperature and strain rate on the interfacial behavior of glass fiber reinforced polypropylene composites: a molecular dynamics study [J]. Polymers, 2019, 11(11): 1766. doi: 10.3390/polym11111766
|
[20] |
LEE W S, XIEA G L, LIN C F. The strain rate and temperature dependence of the dynamic impact response of tungsten composite [J]. Materials Science and Engineering: A, 1998, 257(2): 256–267. doi: 10.1016/S0921-5093(98)00852-1
|
[21] |
WU C C, WANG S H, CHEN C Y, et al. Inverse effect of strain rate on mechanical behavior and phase transformation of superaustenitic stainless steel [J]. Scripta Materialia, 2007, 56(8): 717–720. doi: 10.1016/j.scriptamat.2006.08.064
|