Volume 37 Issue 4
Sep 2023
Turn off MathJax
Article Contents
XIE Lin, LIU Yingbin, FAN Zhiqiang, HU Xiaoyan. Measurement Performance Regulation of PVDF Sensor Based on Composite Piezoelectricity[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043401. doi: 10.11858/gywlxb.20230645
Citation: XIE Lin, LIU Yingbin, FAN Zhiqiang, HU Xiaoyan. Measurement Performance Regulation of PVDF Sensor Based on Composite Piezoelectricity[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 043401. doi: 10.11858/gywlxb.20230645

Measurement Performance Regulation of PVDF Sensor Based on Composite Piezoelectricity

doi: 10.11858/gywlxb.20230645
  • Received Date: 20 Apr 2023
  • Rev Recd Date: 13 Jun 2023
  • Available Online: 08 Aug 2023
  • Issue Publish Date: 01 Sep 2023
  • To explore the flexible measurement technology under low-intensity shock wave, the shock tube calibration experiment was carried out for the polyvinylidene difluoride (PVDF) sensor based on the flexible substrate with an aperture of 8 mm. According to the experimental results, different bonding modes are used to add different thicknesses of damping layer for the PVDF sensor, and the reliability of the sensor was evaluated in terms of the signal pulse width, the sensitivity coefficient and the amplitude of overshoot signal after loading shock waves with different intensities. Then the narrow pulse width shock wave was loaded to verify that the designed sensor can adapt to the measurement of different pulse width shock waves. The experimental results show that adding damping layer can greatly reduce the amplitude of overshot signal and improve the pulse width and frequency response of sensor measurement. STS-400 (single-side thickened sensor-400) under two types of pulse width signal loading obtained better test results, and the relative measurement error is not greater than ±12%. At the same time, it is concluded that PVDF film sensor is more suitable for testing signals with a pulse width of 10 ms or less. The new PVDF sensor designed can provide ideas for measuring explosive shock wave signals.

     

  • loading
  • [1]
    伞海生, 宋子军, 王翔,等. 适用于恶劣环境的MEMS压阻式压力传感器 [J]. 光学精密工程, 2012, 20(3): 550–555. doi: 10.3788/OPE.20122003.0550

    SAN H S, SONG Z J, WANG X, et al. Piezo-resistive pressure sensors for harsh environments [J]. Optics and Precision Engineering, 2012, 20(3): 550–555. doi: 10.3788/OPE.20122003.0550
    [2]
    HEIDARI H. Electronic skins with a global attraction [J]. Nature Electronics, 2018, 1(11): 578-579.
    [3]
    ESKRIDGE S L, MACERA C A, GALARNEAU M R, et al. Injuries from combat explosions in Iraq: injury type, location, and severity [J]. Injury-International Journal of the Care of the Injured, 2012, 43(10): 1678–1682. doi: 10.1016/j.injury.2012.05.027
    [4]
    PANG C, LEE C, SUH K Y. Recent advances in flexible sensors for wearable and implantable devices [J]. Journal of Applied Polymer Science, 2013, 130(3): 1429–1441. doi: 10.1002/app.39461
    [5]
    CHEN J, LIU T. Technology advances in flexible displays and substrates [J]. IEEE Access, 2013, 1: 150–158. doi: 10.1109/ACCESS.2013.2260792
    [6]
    郭旭东, 葛斌, 王文兴. 无线供能式微型植入式压力检测系统 [J]. 生物医学工程学杂志, 2013, 30(4): 724–729.

    GUO X D, GE B, WANG W X. Wireless power supply miniature implantable pressure detection system [J]. Journal of Biomedical Engineering, 2013, 30(4): 724–729.
    [7]
    周剑, 侯占强, 肖定邦. 极端环境下压力传感器的研究进展 [J]. 国防科技, 2015, 36(4): 15–19.

    ZHOU J, HOU Z Q, XIAO D B. Review on pressure sensors in harsh environment [J]. National Defense Science and Technology, 2015, 36(4): 15–19.
    [8]
    蔡军锋, 易建政, 檀朝彬, 等. PVDF压电传感器在爆炸冲击波测量中的应用 [J]. 传感器世界, 2005, 11(3): 13–15.

    CAI J F, YI J Z, TAN C B, et al. Application of PVDF piezoelectric film sensor to explosive blast wave measurements [J]. Sensor World, 2005, 11(3): 13–15.
    [9]
    张向阳, 徐景茂, 陈安敏, 等. PVDF压电传感器在模型化爆中的应用[J]. 计量与测试技术, 2009, 36(12): 29−31.

    ZHANG X Y, XU J M, CHEN A M, et al. Application of PVDF piezoelectric pressure sensor in chemical explosion model test [J].Metrology & Measurement Technique, 2009, 36(12): 29−31.
    [10]
    张安跃, 唐志平, 郑航. PVDF压力传感器的冲击压电特性研究 [J]. 实验力学, 2009, 24(3): 70–76.

    ZHANG A Y, TANG Z P, ZHENG H. A study of impact piezoelectric property of PVDF stress gauges [J]. Journal of Experimental Mechanics, 2009, 24(3): 70–76.
    [11]
    GUO R, ZHANG H L, CAO S L, et al. A self-powered stretchable sensor fabricated by serpentine PVDF film for multiple dynamic monitoring [J]. Materials and Design, 2019, 182: 108025. doi: 10.1016/j.matdes.2019.108025
    [12]
    WANG G, LIU T, SUN X C, et al. Flexible pressure sensor based on PVDF nanofiber [J]. Sensors and Actuators A: Physical, 2018, 280: 319–325. doi: 10.1016/j.sna.2018.07.057
    [13]
    KOH A, KANG D, XUE Y, et al. A soft, wearable microfluidic device for the capture, storage, and colorimetric sensing of sweat [J]. Science Translational Medicine, 2016, 8(366): 366165.
    [14]
    杨军, 张力, 李新良. 动态计量技术发展中的几个关键问题 [J]. 计测技术, 2021, 41(2): 8–21.

    YANG J, ZHANG L, LI X L. Several primary problems in the development of dynamic metrology [J]. Metrology & Measurement Technology, 2021, 41(2): 8–21.
    [15]
    SVETE A, KUTIN J. Identifying the high-frequency response of a piezoelectric pressure measurement system using a shock tube primary method [J]. Mechanical Systems and Signal Processing, 2022, 162: 108014. doi: 10.1016/j.ymssp.2021.108014
    [16]
    杨军, 薛斌. 激波管管长对阶跃压力波形的影响分析[J]. 振动与冲击, 2019, 38(3): 252−257.

    YANG J, XUE B. Effects of shock tube length on step pressure waveform [J]. Journal of Vibration and Shock, 2019, 38(3): 252−257.
    [17]
    杨凡, 孔德仁, 姜波, 等. 基于激波管校准的冲击波压力传感器动态特性研究[J]. 南京理工大学学报, 2017, 41(3): 330−336.

    YANG F, KONG D R, JIANG B, et al. Dynamic characteristic of shock wave pressure sensor based on shock tube calibration [J].Journal of Nanjing University of Science and Technology, 2017, 41(3): 330−336.
    [18]
    孙艳馥, 王欣. 爆炸冲击波对人体损伤与防护分析 [J]. 火炸药学报, 2008, 31(4): 50–53.

    SUN Y F, WANG X. Analysis of human body injury due to blast wave and protection method [J]. Chinese Journal of Explosives & Propellants, 2008, 31(4): 50–53.
    [19]
    方小星, 朱志宇, 张冰, 等. 基于探测性能的舰载雷达电磁兼容分析 [J]. 现代雷达, 2016, 38(2): 6–10.

    FANG X X, ZHU Z Y, ZHANG B, et al. Electromagnetic compatibility analysis of ship-borne radar based on radar detection performance [J]. Modern Radar, 2016, 38(2): 6–10.
    [20]
    范志强, 常瀚林, 何天明, 等. 基于PVDF复合压电效应的低强度冲击波柔性测量 [J]. 爆炸与冲击, 2023, 43(1): 013102.

    FAN Z Q, CHANG H L, HE T M, et al. Low intensity shock wave flexibility measurement based on PVDF composite piezoelectric effect [J]. Explosion and Shock Waves, 2023, 43(1): 013102.
    [21]
    邓禹. 谐振电路在信号合路中的应用 [J]. 集成电路应用, 2020, 37(5): 154–156.

    DENG Y. The application of resonant circuit in signal combination [J]. Applications of IC, 2020, 37(5): 154–156.
    [22]
    吴如兆. 高频冲击波测量专用压力传感器研究 [D]. 上海: 复旦大学, 2010.

    WU R Z. Research on special pressure sensor for high frequency shock wave measurement [D]. Shanghai: Fudan University, 2010.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views(261) PDF downloads(38) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return