Citation: | LU Kewei, JING Lin. Dynamic Response of Equipment Cabin Bottom Plate of High-Speed Train Subjected to Ballast Impact[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044203. doi: 10.11858/gywlxb.20230642 |
[1] |
FAROOQ M A, NIMBALKAR S, FATAHI B. Three-dimensional finite element analyses of tyre derived aggregates in ballasted and ballastless tracks [J]. Computers and Geotechnics, 2021, 136: 104220. doi: 10.1016/j.compgeo.2021.104220
|
[2] |
QUINN A D, HAYWARD M, BAKER C J, et al. A full-scale experimental and modelling study of ballast flight under high-speed trains [J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2010, 224(2): 61–74. doi: 10.1243/09544097JRRT294
|
[3] |
DING D, OUAHSINE A, XIAO W X, et al. Numerical study of ballast-flight caused by dropping snow/ice blocks in high-speed railways using discontinuous deformation analysis (DDA) [J]. Transportation Geotechnics, 2020, 22: 100314. doi: 10.1016/j.trgeo.2019.100314
|
[4] |
YU Z H, LIU K, ZHOU X F, et al. Low-velocity impact response of aluminum alloy corrugated sandwich beams used for high-speed trains [J]. Thin-Walled Structures, 2023, 183: 110375. doi: 10.1016/j.tws.2022.110375
|
[5] |
LAZARO B J, GONZALEZ E, RODRIGUEZ M, et al. Characterization and modeling of flying ballast phenomena in high-speed train lines [C]//9th World Congress Railway Research. Lille, France, 2011.
|
[6] |
SAUSSINE G. Ballast flying and projection phenomena: issues and challenges [C]//WILLIAM W. Hay Railroad Engineering Seminar. Paris, France, 2013.
|
[7] |
姜成, 姚曙光, 曹武雄, 等. 砾石冲击下动车组裙板的变形影响因素分析 [J]. 铁道学报, 2018, 40(2): 23–30. doi: 10.3969/j.issn.1001-8360.2018.02.004
JIANG C, YAO S G, CAO W X, et al. Study of deformation factors for electric multiple unit skirt boards under impact of ballast [J]. Journal of the China Railway Society, 2018, 40(2): 23–30. doi: 10.3969/j.issn.1001-8360.2018.02.004
|
[8] |
SAKLY A, LAKSIMI A, KEBIR H, et al. Experimental and modelling study of low velocity impacts on composite sandwich structures for railway applications [J]. Engineering Failure Analysis, 2016, 68: 22–31. doi: 10.1016/j.engfailanal.2016.03.001
|
[9] |
刘杰夫, 雷紫平, 朱玉雯, 等. 高速列车设备舱底板夹芯结构异物冲击压痕行为及抗性强化 [J]. 中南大学学报(自然科学版), 2022, 53(5): 1976–1988.
LIU J F, LEI Z P, ZHU Y W, et al. Impact indentation behavior and resistance enhancement of high-speed train equipment cabin bottom plate with honeycomb sandwich structure [J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1976–1988.
|
[10] |
敬霖, 韩亮亮, 周彭滔. 基于SPH方法铁路车轴遭受道砟撞击的数值模拟 [J]. 爆炸与冲击, 2018, 38(3): 603–615.
JING L, HAN L L, ZHOU P T. A numerical simulation of railway axles subjected to ballast impact based on SPH method [J]. Explosion and Shock Waves, 2018, 38(3): 603–615.
|
[11] |
JING G Q, DING D, LIU X. High-speed railway ballast flight mechanism analysis and risk management: a literature review [J]. Construction and Building Materials, 2019, 223: 629–642. doi: 10.1016/j.conbuildmat.2019.06.194
|
[12] |
中国铁道研究院. 铁路碎石道砟: TB/T 2140—2008 [S]. 北京: 中国铁道出版社, 2008.
|
[13] |
YIN H, GAO L. Experimental and numerical investigation on ballast flight from perspective of individual particles [J]. Applied Sciences, 2019, 10(1): 286. doi: 10.3390/app10010286
|
[14] |
KWON H B, PARK C S. An experimental study on the relationship between ballast-flying phenomenon and strong wind under high-speed train [C]//7th World Congress on Rail Research. Montreal, QC, Canada, 2006.
|
[15] |
HUANG H, TUTUMLUER E. Image-aided element shape generation method in discrete-element modeling for railroad ballast [J]. Journal of Materials in Civil Engineering, 2014, 26(3): 527–535. doi: 10.1061/(ASCE)MT.1943-5533.0000839
|
[16] |
丁东, 李杰, 王辰永, 等. 高速铁路飞砟问题影响因素与研究进展 [J]. 铁道科学与工程学报, 2022, 19(11): 3117–3126. doi: 10.19713/j.cnki.43-1423/u.t20211476
DING D, LI J, WANG C Y, et al. Influence factors and research progress of ballast flight in high-speed railways [J]. Journal of Railway Science and Engineering, 2022, 19(11): 3117–3126. doi: 10.19713/j.cnki.43-1423/u.t20211476
|
[17] |
毕程程. 华山花岗岩HJC本构参数标定及爆破损伤数值模拟 [D]. 合肥: 合肥工业大学, 2018.
BI C C. Calibration of HJC constitutive parameters of Huashan granite and its blasting damage numerical simulation [D]. Hefei: Hefei University of Technology, 2018.
|
[18] |
BAYKASOGLU C, SUNBULOGLU E, BOZDAG S E, et al. Crash and structural analyses of an aluminium railroad passenger car [J]. International Journal of Crashworthiness, 2012, 17(5): 519–528. doi: 10.1080/13588265.2012.690591
|
[19] |
周伦, 苏兴亚, 敬霖, 等. 6061-T6铝合金动态拉伸本构关系及失效行为 [J]. 爆炸与冲击, 2022, 42(9): 091407.
ZHOU L, SU X Y, JING L, et al. Dynamic tensile constitutive relationship and failure behavior of 6061-T6 aluminum alloy [J]. Explosion and Shock Waves, 2022, 42(9): 091407.
|