Citation: | YANG Zhengqing, LUAN Yunbo, ZHANG Juqi, WEN Zhen, WANG Wei, LI Mingzhen, LI Yongcun. Design and Mechanical Properties of Short Carbon Fiber Reinforced Biomimetic Materials[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044102. doi: 10.11858/gywlxb.20230639 |
[1] |
CHAND S. Review carbon fibers for composites [J]. Journal of Materials Science, 2000, 35(6): 1303–1313. doi: 10.1023/A:1004780301489
|
[2] |
IVORRA S, GARCÉS P, CATALÁ G, et al. Effect of silica fume particle size on mechanical properties of short carbon fiber reinforced concrete [J]. Materials & Design, 2010, 31(3): 1553–1558. doi: 10.1016/j.matdes.2009.09.050
|
[3] |
WONG E W, SHEEHAN P E, LIEBER C M. Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes [J]. Science, 1997, 277(5334): 1971–1975. doi: 10.1126/science.277.5334.1971
|
[4] |
CANEL T, BAĞLAN İ, SINMAZÇELIK T. Mathematical modeling of heat distribution on carbon fiber Poly (ether-ether-ketone) (PEEK) composite during laser ablation [J]. Optics & Laser Technology, 2020, 127: 106190. doi: 10.1016/j.optlastec.2020.106190
|
[5] |
FERNÁNDEZ A, SANTANGELO-MURO M, FERNÁNDEZ-BLÁZQUEZ J P, et al. Processing and properties of long recycled-carbon-fibre reinforced polypropylene [J]. Composites Part B: Engineering, 2021, 211: 108653. doi: 10.1016/j.compositesb.2021.108653
|
[6] |
CAO M S, SONG W L, HOU Z L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites [J]. Carbon, 2010, 48(3): 788–796. doi: 10.1016/j.carbon.2009.10.028
|
[7] |
陈雯娜. 短切碳纤维增强热塑性复合材料性能影响因素 [J]. 纺织科学研究, 2021(5): 58–63.
CHEN W N. Factors affecting the performance of short cut carbon fiber reinforced thermoplastic composites [J]. Textile Science Research, 2021(5): 58–63.
|
[8] |
POKKALLA D K, KUMAR V, JO E, et al. Characterization of anisotropic mechanical properties of polymer composites from a hybrid additive manufacturing-compression molding process using X-ray computer tomography [C]//Proceedings of SPIE 12047, Nondestructive Characterization and Monitoring of Advanced Materials, Aerospace, Civil Infrastructure, and Transportation ⅩⅥ. Long Beach, United States: SPIE, 2022: 120470V.
|
[9] |
SHENG N, ZHU R J, DONG K X, et al. Vertically aligned carbon fibers as supporting scaffolds for phase change composites with anisotropic thermal conductivity and good shape stability [J]. Journal of Materials Chemistry A, 2019, 7(9): 4934–4940. doi: 10.1039/c8ta11329g
|
[10] |
崔福斋, 冯庆玲. 生物材料学[M]. 2版. 北京: 清华大学出版社, 2004.
CUI F Z, FENG Q L. Biomaterials science [M]. 2nd ed. Beijing: Tsinghua University Press, 2004.
|
[11] |
WEGST U G K, ASHBY M F. The mechanical efficiency of natural materials [J]. Philosophical Magazine, 2004, 84(21): 2167–2186. doi: 10.1080/14786430410001680935
|
[12] |
ZHANG B J, YANG J D, LI Y J, et al. Bioinspired basalt fiber composites with higher impact resistance through coupling sinusoidal and helical structures inspired by mantis shrimp [J]. International Journal of Mechanical Sciences, 2023, 244: 108073. doi: 10.1016/j.ijmecsci.2022.108073
|
[13] |
ZHONG Y, JIANG Z H, SHANGGUAN W W, et al. Design value of the compressive strength for bamboo fiber-reinforced composite based on a reliability analysis [J]. BioResources, 2014, 9(4): 7737–7748. doi: 10.15376/biores.9.4.7737-7748
|
[14] |
RHO J Y, KUHN-SPEARING L, ZIOUPOS P. Mechanical properties and the hierarchical structure of bone [J]. Medical Engineering & Physics, 1998, 20(2): 92–102. doi: 10.1016/S1350-4533(98)00007-1
|
[15] |
YANG W, SHERMAN V R, GLUDOVATZ B, et al. Protective role of Arapaima gigas fish scales: structure and mechanical behavior [J]. Acta Biomaterialia, 2014, 10(8): 3599–3614. doi: 10.1016/j.actbio.2014.04.009
|
[16] |
ZIMMERMANN E A, GLUDOVATZ B, SCHAIBLE E, et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour [J]. Nature Communications, 2013, 4: 2634. doi: 10.1038/ncomms3634
|
[17] |
WEAVER J C, MILLIRON G W, MISEREZ A, et al. The stomatopod dactyl club: a formidable damage-tolerant biological hammer [J]. Science, 2012, 336(6086): 1275–1280. doi: 10.1126/science.1218764
|
[18] |
MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections [J]. Science, 2013, 339(6121): 773–779. doi: 10.1126/science.1220854
|
[19] |
GUARÍN-ZAPATA N, GOMEZ J, YARAGHI N, et al. Shear wave filtering in naturally-occurring Bouligand structures [J]. Acta Biomaterialia, 2015, 23: 11–20. doi: 10.1016/j.actbio.2015.04.039
|
[20] |
GRUNENFELDER L K, SUKSANGPANYA N, SALINAS C, et al. Bio-inspired impact-resistant composites [J]. Acta Biomaterialia, 2014, 10(9): 3997–4008. doi: 10.1016/j.actbio.2014.03.022
|
[21] |
LIU J W, ZHU J H, ZHANG C L, et al. Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity [J]. Journal of the American Chemical Society, 2010, 132(26): 8945–8952. doi: 10.1021/ja910871s
|
[22] |
YAO J, YAN H, LIEBER C M. A nanoscale combing technique for the large-scale assembly of highly aligned nanowires [J]. Nature Nanotechnology, 2013, 8(5): 329–335. doi: 10.1038/nnano.2013.55
|
[23] |
XU F, DURHAM J W, WILEY B J, et al. Strain-release assembly of nanowires on stretchable substrates [J]. ACS Nano, 2011, 5(2): 1556–1563. doi: 10.1021/nn103183d
|
[24] |
PEVZNER A, ENGEL Y, ELNATHAN R, et al. Knocking down highly-ordered large-scale nanowire arrays [J]. Nano Letters, 2010, 10(4): 1202–1208. doi: 10.1021/nl903560u
|
[25] |
NING F D, CONG W L, QIU J J, et al. Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling [J]. Composites Part B: Engineering, 2015, 80: 369–378. doi: 10.1016/j.compositesb.2015.06.013
|