Volume 37 Issue 5
Nov 2023
Turn off MathJax
Article Contents
ZHU Wangping, LI Jianqiao. Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632
Citation: ZHU Wangping, LI Jianqiao. Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform[J]. Chinese Journal of High Pressure Physics, 2023, 37(5): 054104. doi: 10.11858/gywlxb.20230632

Research on Electromagnetic Radiation Generated During Explosion Based on Wavelet Transform

doi: 10.11858/gywlxb.20230632
  • Received Date: 29 Mar 2023
  • Rev Recd Date: 20 Apr 2023
  • Accepted Date: 28 Apr 2023
  • Issue Publish Date: 07 Nov 2023
  • Conventional explosions are accompanied by significant electromagnetic effects, which can interfere with explosion testing and also serve as a non-contact means of testing explosion shock waves. The study of explosive electromagnetic effects has important engineering application value. A measurement system composed of an oscilloscope, antennas, and a high-speed camera was used to conduct 5 sets of electromagnetic radiation measurement experiments, whose testing object is 100 or 200 g RDX. The experiment recorded electromagnetic radiation signals with 2 ms, and analyzed the electromagnetic radiation generated by RDX explosion. The experimental results showed that the RDX explosive electromagnetic radiation signal mainly consists of three periods: a typical peak at 30 μs with strong repeatability, subsequent peaks with strong repeatability in the same group but poor repeatability in different groups during 30−200 μs, and a pulse signal without obvious repeatability after 200 μs. Combined with high-speed imaging of the explosion, it’s found that there has been a strong correlation between the explosive electromagnetic radiation and the state of detonation products. The typical peak and subsequent peaks are mainly signals generated by the ionization of the explosive products during the violent reaction in the pre-explosion stage. By using the antenna factor to invert the electric field strength curve, the relationship between the explosive equivalent, distance, and electric field strength was analyzed. It’s found that at the same explosive equivalent, the electric field intensity of typical peak decreases exponentially with distance. At the same distance, the electric field intensity of typical peak generated by a 200 g explosion is greater than that of a 100 g explosion.

     

  • loading
  • [1]
    舒志强. 核电磁脉冲孔耦合及防护研究 [D]. 西安: 西安电子科技大学, 2009: 1−2.

    SHU Z Q. Analysis of NEMP aperture coupling and protection [D]. Xi’an: Xidian University, 2009: 1−2.
    [2]
    李顺. 强电磁脉冲下的冲击波超压测试系统设计 [D]. 太原: 中北大学, 2022: 1−3.

    LI S. Design of shock wave overpressure test system under strong EMP [D]. Taiyuan: North University of China, 2022: 1−3.
    [3]
    YAO W B, ZHOU H B, HAN R Y, et al. An empirical approach for parameters estimation of underwater electrical wire explosion [J]. Physics of Plasmas, 2019, 9(26): 093502. doi: 10.1063/1.5111518
    [4]
    曹景阳, 谢树果, 苏东林. 航天火工品爆炸引起的电磁干扰测量 [J]. 北京航空航天大学学报, 2011, 37(11): 1384–1387, 1394. doi: 10.13700/j.bh.1001-5965.2011.11.015

    CAO J Y, XIE S G, SU D L. Electromagnetic interference caused by aerospace explosives [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(11): 1384–1387, 1394. doi: 10.13700/j.bh.1001-5965.2011.11.015
    [5]
    CHEN C, GAO R K, GUO K, et al. Thermoelectric behavior of Al/PTFE reactive materials induced by temperature gradient [J]. International Communications in Heat and Mass Transfer, 2021, 123: 105203. doi: 10.1016/j.icheatmasstransfer.2021.105203
    [6]
    KOLSKY H. Electromagnetic waves emitted on detonation of explosives [J]. Nature, 1954, 173(4393): 77. doi: 10.1038/173077a0
    [7]
    COOK M A. The science of high explosives [M]. New York: Reinhold, 1958.
    [8]
    BORONIN A P, KAPINOS V N, KRENEV S A, et al. Physical mechanism of electromagnetic field generation during the explosion of condensed explosive charges. Survey of literature [J]. Combustion, Explosion and Shock Waves, 1990, 26(5): 597–602. doi: 10.1007/BF00843137
    [9]
    VAN L V. Electromagnetic emission from chemical explosions [J]. IEEE Transactions on Nuclear Science, 1982, 29(6): 1843–1849. doi: 10.1109/TNS.1982.4336458
    [10]
    陈生玉, 孙新利, 钱世平, 等. 化爆引起的电磁辐射 [J]. 爆炸与冲击, 1997, 17(4): 363–368.

    CHEN S Y, SUN X L, QIAN S P, et al. Electromagnetic radiation caused by chemical explosion [J]. Explosion and Shock Waves, 1997, 17(4): 363–368.
    [11]
    HARLIN J, NEMZEK R. Physical properties of conventional explosives deduced from radio frequency emissions [J]. Propellants, Explosives, Pyrotechnics, 2009, 34(6): 544–550. doi: 10.1002/prep.200800076
    [12]
    NEMZEK R J, ARROWSMITH S, LAYNE J P. Ten trials at lower slobbovia: searching for repetitive electromagnetic and seismoacoustic signatures in explosions: LA-UR-13-22138 [R]. Los Alamos: Los Alamos National Laboratory, 2013.
    [13]
    栗建桥, 马天宝, 宁建国. 爆炸对自然磁场干扰机理 [J]. 力学学报, 2018, 50(5): 1206–1218. doi: 10.6052/0459-1879-18-081

    LI J Q, MA T B, NING J G. Mechanism of explosion-induced disturbance in natural magnetic field [J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1206–1218. doi: 10.6052/0459-1879-18-081
    [14]
    REN H L, CHU Z X, LI J Q. Study on electromagnetic radiation generated during detonation [J]. Propellants, Explosives, Pyrotechnics, 2019, 44(12): 1541–1553. doi: 10.1002/prep.201900118
    [15]
    崔元博, 商飞, 孔德仁, 等. 爆炸场电磁辐射特性测试技术研究 [J]. 火工品, 2019(5): 1–5. doi: 10.3969/j.issn.1003-1480.2019.05.001

    CUI Y B, SHANG F, KONG D R, et al. Research on testing technology of electromagnetic radiation characteristics in explosive field [J]. Initiators & Pyrotechnics, 2019(5): 1–5. doi: 10.3969/j.issn.1003-1480.2019.05.001
    [16]
    崔元博, 孔德仁, 张学辉, 等. TNT爆炸电磁辐射信号测量及分析 [J]. 含能材料, 2021, 29(3): 241–250. doi: 10.11943/CJEM2020181

    CUI Y B, KONG D R, ZHANG X H, et al. Measurement and analysis of electromagnetic radiation signals of TNT explosives [J]. Chinese Journal of Energetic Materials, 2021, 29(3): 241–250. doi: 10.11943/CJEM2020181
    [17]
    崔元博, 孔德仁, 张学辉, 等. 典型炸药爆炸过程中电磁辐射特性分析 [J]. 国防科技大学学报, 2022, 44(6): 70–80. doi: 10.11887/j.cn.202206009

    CUI Y B, KONG D R, ZHANG X H, et al. Analysis of electromagnetic radiation characteristics during typical explosives explosion [J]. Journal of National University of Defense Technology, 2022, 44(6): 70–80. doi: 10.11887/j.cn.202206009
    [18]
    张斯薇. 基于小波变换的探地雷达数据去噪方法研究 [D]. 淮南: 安徽理工大学, 2022: 1−3.

    ZHANG S W. Research on denoising method of ground penetrating radar data based on wavelet transform [D]. Huainan: Anhui University of Science & Technology, 2022: 1−3.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(5)

    Article Metrics

    Article views(106) PDF downloads(75) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return