Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
ZHAO Wendi, DUAN Defang, CUI Tian. New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727
Citation: ZHAO Wendi, DUAN Defang, CUI Tian. New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 020101. doi: 10.11858/gywlxb.20210727

New Developments of Hydrogen-Based High-Temperature Superconductors under High Pressure

doi: 10.11858/gywlxb.20210727
  • Received Date: 28 Feb 2021
  • Rev Recd Date: 14 Mar 2021
  • Hydrogen-rich materials are considered to be the most potential candidates for room-temperature superconductors, yielding a research hotspot in physics, material science and so on. Remarkably, the new covalent hydride H3S and clathrate like LaH10, exhibit record high superconducting transition temperature (Tc) above 200 K both found theoretically and experimentally, which further promotes the study on the superconductivity of hydrogen-rich compounds. Very recently, the successful experimental discovery of high-temperature superconductivity at 288 K in a carbonaceous sulfur hydride system at high pressure shows the light for achieving room-temperature superconductors. In this paper, we introduce the structures and superconductivities of three typical hydrogen-rich compounds, including HfH10, a "pentagraphenelike" superconductor exhibiting an extraordinarily high Tc of around 213–234 K at 250 GPa, which was recently discovered for the first time in layered structure hydrides.

     

  • loading
  • [1]
    BEDNORZ J G, MÜLLER K A. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift für Physik B Condensed Matter, 1986, 64(2): 189–193. doi: 10.1007/BF01303701
    [2]
    GAO L, XUE Y Y, CHEN F, et al. Superconductivity up to 164 K in HgBa2Ca m-1CumO2 m+2+ δ (m = 1, 2, and 3) under quasihydrostatic pressures [J]. Physical Review B, 1994, 50(6): 4260–4263. doi: 10.1103/PhysRevB.50.4260
    [3]
    WU G, XIE Y L, CHEN H, et al. Superconductivity at 56 K in samarium-doped SrFeAsF [J]. Journal of Physics: Condensed Matter, 2009, 21(14): 142203. doi: 10.1088/0953-8984/21/14/142203
    [4]
    WIGNER E, HUNTINGTON H B. On the possibility of a metallic modification of hydrogen [J]. Journal of Chemical Physics, 1935, 3(12): 764–770. doi: 10.1063/1.1749590
    [5]
    BARDEEN J, COOPER L N, SCHRIEFFER J R. Theory of superconductivity [J]. Physical Review, 1957, 108(5): 1175–1204. doi: 10.1103/PhysRev.108.1175
    [6]
    DALLADAY-SIMPSON P, HOWIE R T, GREGORYANZ E. Evidence for a new phase of dense hydrogen above 325 gigapascals [J]. Nature, 2016, 529(7584): 63–67. doi: 10.1038/nature16164
    [7]
    LOUBEYRE P, OCCELLI F, DUMAS P. Synchrotron infrared spectroscopic evidence of the probable transition to metal hydrogen [J]. Nature, 2020, 577(7792): 631–635. doi: 10.1038/s41586-019-1927-3
    [8]
    ASHCROFT N W. Hydrogen dominant metallic alloys: high temperature superconductors? [J]. Physical Review Letters, 2004, 92(18): 187002. doi: 10.1103/PhysRevLett.92.187002
    [9]
    DUAN D F, LIU Y X, MA Y B, et al. Structure and superconductivity of hydrides at high pressures [J]. National Science Review, 2017, 4(1): 121–135. doi: 10.1093/nsr/nww029
    [10]
    DUAN D F, YU H Y, XIE H, et al. Ab initio approach and its impact on superconductivity [J]. Journal of Superconductivity and Novel Magnetism, 2019, 32(1): 53–60. doi: 10.1007/s10948-018-4900-8
    [11]
    EREMETS M I, TROJAN I A, MEDVEDEV S A, et al. Superconductivity in hydrogen dominant materials: silane [J]. Science, 2008, 319(5869): 1506–1509. doi: 10.1126/science.1153282
    [12]
    GONCHARENKO I, EREMETS M I, HANFLAND M, et al. Pressure-induced hydrogen-dominant metallic state in aluminum hydride [J]. Physical Review Letters, 2008, 100(4): 045504. doi: 10.1103/PhysRevLett.100.045504
    [13]
    DUAN D F, LIU Y X, TIAN F B, et al. Pressure-induced metallization of dense (H2S)2H2 with high-Tc superconductivity [J]. Scientific Reports, 2014, 4: 6968. doi: 10.1038/srep06968
    [14]
    DUAN D F, HUANG X L, TIAN F B, et al. Pressure-induced decomposition of solid hydrogen sulfide [J]. Physical Review B, 2015, 91(18): 180502. doi: 10.1103/PhysRevB.91.180502
    [15]
    WANG H, TSE J S, TANAKA K, et al. Superconductive sodalite-like clathrate calcium hydride at high pressures [J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(17): 6463–6466. doi: 10.1073/pnas.1118168109
    [16]
    LI Y W, HAO J, LIU H Y, et al. Pressure-stabilized superconductive yttrium hydrides [J]. Scientific Reports, 2015, 5: 9948. doi: 10.1038/srep09948
    [17]
    LIU H Y, NAUMOV I I, HOFFMANN R, et al. Potential high-Tc superconducting lanthanum and yttrium hydrides at high pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(27): 6990–6995. doi: 10.1073/pnas.1704505114
    [18]
    PENG F, SUN Y, PICKARD C J, et al. Hydrogen clathrate structures in rare earth hydrides at high pressures: possible route to room-temperature superconductivity [J]. Physical Review Letters, 2017, 119(10): 107001. doi: 10.1103/PhysRevLett.119.107001
    [19]
    KVASHNIN A G, SEMENOK D V, KRUGLOV I A, et al. High-temperature superconductivity in a Th-H system under pressure conditions [J]. ACS Applied Materials & Interfaces, 2018, 10(50): 43809–43816. doi: 10.1021/acsami.8b17100
    [20]
    JIN X L, MENG X, HE Z, et al. Superconducting high-pressure phases of disilane [J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(22): 9969–9973. doi: 10.1073/pnas.1005242107
    [21]
    TROYAN I, GAVRILIUK A, RÜFFER R, et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering [J]. Science, 2016, 351(6279): 1303–1306. doi: 10.1126/science.aac8176
    [22]
    DUAN D F, TIAN F B, LIU Y X, et al. Enhancement of Tc in the atomic phase of iodine-doped hydrogen at high pressures [J]. Physical Chemistry Chemical Physics, 2015, 17(48): 32335–32340. doi: 10.1039/C5CP05218A
    [23]
    DUAN D F, HUANG X L, TIAN F B, et al. Predicted formation of H $$ in solid halogen polyhydrides at high pressures [J]. The Journal of Physical Chemistry A, 2015, 119(45): 11059–11065. doi: 10.1021/acs.jpca.5b08183
    [24]
    SHAO Z J, HUANG Y P, DUAN D F, et al. Stable structures and superconductivity of an At-H system at high pressure [J]. Physical Chemistry Chemical Physics, 2018, 20(38): 24783–24789. doi: 10.1039/C8CP04317E
    [25]
    WANG L Y, DUAN D F, YU H Y, et al. High-pressure formation of cobalt polyhydrides: a first-principle study [J]. Inorganic Chemistry, 2018, 57(1): 181–186. doi: 10.1021/acs.inorgchem.7b02371
    [26]
    SHAO Z J, DUAN D F, MA Y B, et al. Ternary superconducting cophosphorus hydrides stabilized via lithium [J]. NPG Computational Materials, 2019, 5(1): 104. doi: 10.1038/s41524-019-0244-6
    [27]
    SONG H, DUAN D F, CUI T, et al. High-Tc state of lanthanum hydrides [J]. Physical Review B, 2020, 102(1): 014510. doi: 10.1103/PhysRevB.102.014510
    [28]
    DROZDOV A P, EREMETS M I, TROYAN I A, et al. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system [J]. Nature, 2015, 525(7567): 73–76. doi: 10.1038/nature14964
    [29]
    EINAGA M, SAKATA M, ISHIKAWA T, et al. Crystal structure of the superconducting phase of sulfur hydride [J]. Nature Physics, 2016, 12(9): 835–838. doi: 10.1038/nphys3760
    [30]
    SOMAYAZULU M, AHART M, MISHRA A K, et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures [J]. Physical Review Letters, 2019, 122(2): 027001. doi: 10.1103/PhysRevLett.122.027001
    [31]
    DROZDOV A P, KONG P P, MINKOV V S, et al. Superconductivity at 250 K in lanthanum hydride under high pressures [J]. Nature, 2019, 569(7757): 528–531. doi: 10.1038/s41586-019-1201-8
    [32]
    SEMENOK D V, KVASHNIN A G, IVANOVA A G, et al. Superconductivity at 161 K in thorium hydride ThH10: synthesis and properties [J]. Materials Today, 2020, 33: 36–44. doi: 10.1016/j.mattod.2019.10.005
    [33]
    XIE H, YAO Y S, FENG X L, et al. Hydrogen pentagraphenelike structure stabilized by hafnium: a high-temperature conventional superconductor [J]. Physical Review Letters, 2020, 125(21): 217001. doi: 10.1103/PhysRevLett.125.217001
    [34]
    STROBEL T A, GANESH P, SOMAYAZULU M, et al. Novel cooperative interactions and structural ordering in H2S-H2 [J]. Physical Review Letters, 2011, 107(25): 255503. doi: 10.1103/PhysRevLett.107.255503
    [35]
    HUANG X L, WANG X, DUAN D F, et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility [J]. National Science Review, 2019, 6(4): 713–718. doi: 10.1093/nsr/nwz061
    [36]
    ALEXANDER F, GONCHAROV S S, LOBANOV V B, et al. Stable high-pressure phases in the H-S system determined by chemically reacting hydrogen and sulfur [J]. Physical Review B, 2017, 95(14): 140101. doi: 10.1103/PhysRevB.95.140101
    [37]
    PAPACONSTANTOPOULOS D A, KLEIN B M, MEHL M J, et al. Cubic H3S around 200 GPa: an atomic hydrogen superconductor stabilized by sulfur [J]. Physical Review B, 2015, 91(18): 184511. doi: 10.1103/PhysRevB.91.184511
    [38]
    QUAN Y D, PICKETT W E. Van hove singularities and spectral smearing in high-temperature superconducting H3S [J]. Physical Review B, 2016, 93(10): 104526. doi: 10.1103/PhysRevB.93.104526
    [39]
    HEIL C, BOERI L. Influence of bonding on superconductivity in high-pressure hydrides [J]. Physical Review B, 2015, 92(6): 060508. doi: 10.1103/PhysRevB.92.060508
    [40]
    GE Y F, ZHANG F, YAO Y G. First-principles demonstration of superconductivity at 280 K in hydrogen sulfide with low phosphorus substitution [J]. Physical Review B, 2016, 93(22): 224513. doi: 10.1103/PhysRevB.93.224513
    [41]
    SNIDER E, DASENBROCK-GAMMON N, MCBRIDE R, et al. Room-temperature superconductivity in a carbonaceous sulfur hydride [J]. Nature, 2020, 586(7829): 373–377. doi: 10.1038/s41586-020-2801-z
    [42]
    SUN Y, TIAN Y F, JIANG B W, et al. Computational discovery of a dynamically stable cubic SH3-like high-temperature superconductor at 100 GPa via CH4 intercalation [J]. Physical Review B, 2020, 101: 174102. doi: 10.1103/PhysRevB.101.174102
    [43]
    CUI W W, BI T G, SHI J M, et al. Route to high-Tc superconductivity via CH4-intercalated H3S hydride perovskites [J]. Physical Review B, 2020, 101(13): 134504. doi: 10.1103/PhysRevB.101.134504
    [44]
    LI X, HUANG X L, DUAN D F, et al. Polyhydride CeH9 with an atomic-like hydrogen clathrate structure [J]. Nature Communications, 2019, 10(1): 3461. doi: 10.1038/s41467-019-11330-6
    [45]
    ZHOU D, SEMENOK D V, DUAN D F, et al. Superconducting praseodymium superhydrides [J]. Science Advances, 2020, 6(9): eaax6849. doi: 10.1126/sciadv.aax6849
    [46]
    ZHOU D, SEMENOK D V, XIE H, et al. High-pressure synthesis of magnetic neodymium polyhydrides [J]. Journal of the American Chemical Society, 2020, 142(6): 2803–2811. doi: 10.1021/jacs.9b10439
    [47]
    SHAO Z J, DUAN D, MA Y, et al. Unique phase diagram and superconductivity of calcium hydrides at high pressures [J]. Inorganic Chemistry, 2019, 58(4): 2558–2564. doi: 10.1021/acs.inorgchem.8b03165
    [48]
    WU G, HUANG X L, XIE H, et al. Unexpected calcium polyhydride CaH4: a possible route to dissociation of hydrogen molecules [J]. The Journal of Chemical Physics, 2019, 150(4): 044507. doi: 10.1063/1.5053650
    [49]
    PÉPIN C M, GENESTE G, DEWAELE A, et al. Synthesis of FeH5: a layered structure with atomic hydrogen slabs [J]. Science, 2017, 357(6349): 382–385. doi: 10.1126/science.aan0961
    [50]
    ZHONG X, WANG H, ZHANG J R, et al. Tellurium hydrides at high pressures: high-temperature superconductors [J]. Physical Review Letters, 2016, 116(5): 057002. doi: 10.1103/PhysRevLett.116.057002
    [51]
    ZHOU D W, JIN X L, MENG X, et al. Ab initio study revealing a layered structure in hydrogen-rich KH6 under high pressure [J]. Physical Review B, 2012, 86(1): 014118. doi: 10.1103/PhysRevB.86.014118
    [52]
    ZHANG S, WANG Y, ZHANG J, et al. Phase diagram and high-temperature superconductivity of compressed selenium hydrides [J]. Scientific Reports, 2015, 5(3): 1–6.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views(7822) PDF downloads(215) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return