
Citation: | WANG Yuntian, ZENG Xiangguo, CHEN Huayan, YANG Xin, WANG Fang, QI Zhongpeng. Numerical Simulation of Spalling Process of Tantalum Target under Impacts[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024203. doi: 10.11858/gywlxb.20200634 |
晶粒尺寸对多晶材料的力学性能具有很大的影响。霍尔-佩奇效应[1–2]指出,纳米/亚微米多晶材料具有更高的硬度。该理论已在超高压制备的纳米立方氮化硼[3]、亚微米立方氮化硼[4]、纳米孪晶立方氮化硼[5–6]、纳米多晶金刚石[7–8]、纳米孪晶金刚石[9]等多晶材料中得到应用。现有的亚微米/纳米多晶陶瓷块体材料多以纳米粉末为初始材料,在常压和低压(低于1 GPa)环境下[10–13]烧结制备。纳米粉末的表面能高,易团聚,在常压下由高温主导的烧结过程中通常会长大而失去纳米材料的特性[14–15],难以获得细晶结构的多晶陶瓷块体材料。此外,单分散纳米粉末的制备工艺复杂,在技术上存在一定的困难。因此,以纳米粉末为初始材料制备细晶结构的多晶陶瓷块体材料仍然是一个挑战。
压力(强)可以缩小原子间距、改变物质的电子轨道和键合方式,是决定物质存在状态及改变物质性质的基本热力学要素[16]。高压和相变相结合逐渐发展成为一种制备纳米/亚微米多晶陶瓷材料的有效方法[17–23]。高压可以抑制原子的长程扩散进而抑制晶粒长大,利用高压相变合成多晶材料的过程中新相具有更高的成核率[17, 20],并且在高压环境下晶体具有更慢的生长速率;陶瓷材料在特定的热力学条件下一般会发生相变(晶体结构变化),相变是一个“推陈出新”的过程,形成新相的晶粒尺寸与初始材料的晶粒尺寸无必然联系:因此,采用高压相变法可以获得小于初始粉末晶粒尺寸的多晶块体材料。Irifune等[7]利用高压相变方法,将多晶石墨直接转化成晶粒尺寸为10~20 nm的纳米多晶金刚石(Nano Polycrystalline Diamond, NPD),努普硬度达120~140 GPa。王海阔等[8]以晶粒尺寸 10
ZrO2具有高强度、高热稳定性、耐磨和生物相容性好等优点,广泛应用于人造牙齿[24]、特种刀具、人工关节、氧传感器等领域。ZrO2在常温常压下为稳定的单斜相(空间群P21/c),在常温至其熔点(2715 ℃)之间会发生两种相变:1170 ℃时发生单斜相向四方相(空间群P42/nmc)的相变,2370 ℃时出现向立方相(Fm
本研究将晶粒尺寸为2
实验使用的设备为国产铰链式6×800 t六面顶压机。加热组装中,以MgO陶瓷管为高压内衬,石墨管为加热管,叶蜡石为传压介质,加压前在300 ℃下烘烤 12 h[36],组装示意图见图1。
利用金属Bi在2.55 GPa、Tl在3.67 GPa、Ba在5.5 GPa下相变导致电阻突变的特点,采用高压原位电阻测量方式,对腔体压力进行标定[36–37],采用B型热电偶(Pt6%Rh-Pt30%Rh)对加热组装进行了温度标定[38–39]。
微米晶单斜相ZrO2由亚微米单斜相ZrO2在马弗炉中于1500 ℃下保温12 h制得。图2为亚微米晶原料和微米晶原料的X射线衍射(XRD)图谱。经分析,与单斜相ZrO2的ICSD(无机晶体结构数据库)标准PDF卡37-1484的峰位和强度吻合。1号、2号和3号峰是ZrO2单斜相的3个最强峰,其中:1号峰(2
微米晶单斜相ZrO2与3%(摩尔分数)Y2O3原料(购于上海麦克林生化科技有限公司,平均晶粒尺寸为50 nm,纯度为99.99%)加入一定量的酒精混合,超声处理3 h后在真空干燥箱中充分干燥,将混合原料在10 MPa预压压力下压制成直径为11 mm的圆柱后放入MgO陶瓷管。样品在5.5 GPa、800~1700 ℃温压条件下合成,其中:在800~1400 ℃温度范围内,保温时间设置为1 h;1600和1700 ℃的保温时间分别设置为30和20 min。
样品相成分通过对破碎后的粉状ZrO2样品进行XRD表征的方式确定,样品中四方相的晶胞参数通过GSAS软件精修XRD图谱的方式确定,实验仪器为荷兰PANalytical锐影系列X射线衍射仪,阳极靶材为Cu靶,工作电压40 kV,电流为45 mA。样品中四方相的含量通过XRD传统物相定量方法(绝热法定量)估算。样品中的Y元素通过对亚微米晶粒进行能谱(EDS)表征定性确定。样品形貌特征通过德国Zeiss/Auriga FIB扫描电子显微镜(SEM)观察,通过统计SEM照片中100个四方相晶粒尺寸得到样品中四方相的晶粒分布,SEM的工作电压为30 kV,工作电流为50
图4(a)和图4(b)为5.5 GPa、不同温度及保温时间条件下合成样品的XRD图谱,其中M代表单斜相的特征峰,T代表四方相的特征峰。可以看出,在800~1700 ℃范围内随着温度的升高,四方相的衍射峰强度逐渐增强,单斜相的衍射峰强度逐渐减弱,表明部分单斜相转化为四方相,采用XRD物相定量分析方法估算5.5 GPa、1700 ℃烧结后四方相ZrO2的质量分数约为50%。如图4(c)所示,在800~1000 ℃范围内可以观察到微弱的四方相特征峰(2
氧化锆的四方相在常温常压下是不稳定的,通过掺杂离子(如Y3+)可以截获稳定的四方相[26, 41]。如表1所示,1400 ℃下制备的样品中四方相的晶胞参数a和c分别为0.3607(6) nm和0.5219(8) nm,1700 ℃下制备的样品中四方相的晶胞参数a和c分别为0.3615(5) nm和0.5168(3) nm,比未掺杂的ZrO2的晶胞参数[42]稍大,但与掺杂的四方相Zr0.94Y0.06O1.97的晶胞参数[43]相似。Y3+的离子半径大于Zr4+的离子半径,Y3+替代Zr4+位置时,由于离子半径的差异会导致晶格畸变,使晶胞参数变大。由于本研究掺杂的Y2O3量较少,四方相的晶胞参数a和c的变化不明显。图5所示的EDS结果表明,1400和1700 ℃合成样品中的亚微米晶粒均发现了Y元素。EDS结果和精修得出的晶胞参数结果证实了Y3+替代Zr4+形成置换式固溶体。
图6为5.5 GPa压力下不同温度合成样品的SEM照片,图7为5.5 GPa、不同温度下合成样品中亚微米晶粒的晶粒尺寸分布图。从图6中可以看到,高压烧结后得到的单斜相与四方相ZrO2烧结体的结构致密,无裂纹。从图6(a)中可以观察到,在1200 ℃保温 1 h条件下合成的样品中有一定量的微米级晶粒,可能是未相变单斜相晶粒长大的结果;从图6(b)也可以观察到在微米晶粒周围存在大量纳米和亚微米晶粒,推测为微米晶单斜相ZrO2相变后再结晶的四方相细晶粒(TEM表征也证明了该推测)。经统计,亚微米晶粒的平均晶粒尺寸为(145±62) nm,远小于初始单斜相微米晶ZrO2的晶粒尺寸,如图7(a)所示。
如图6(h)所示,1700 ℃保温 20 min条件下合成的样品中同样可以观察到亚微米细晶粒,这些细晶粒可能是由母相(单斜相)“孕育”而出的四方相晶粒。从图7(d)可以看出,该样品中亚微米晶粒的平均晶粒尺寸为(245±107) nm,相较于低温(1200 ℃)合成样品,晶粒有所长大。图6显示了1400 ℃保温 1 h和 1600 ℃保温 30 min条件下合成样品的SEM照片。从图6(d)和图6(f)可以看出,样品中均出现亚微米晶粒。如图7(b)和图7(c)所示,1400和1600 ℃条件下合成样品中亚微米晶粒的平均晶粒尺寸分别为(246±165) nm和(183±62) nm。
为了证明上述亚微米晶粒为微米晶单斜相ZrO2相变后再结晶的四方相晶粒的猜测,对5.5 GPa、1700 ℃条件下制备的样品中的亚微米晶粒进行TEM表征。图8(a)和图8(b)分别为样品中亚微米晶粒的低倍TEM照片和HRTEM照片。如图8(b)插图所示,亚微米晶粒的晶面间距为2.9 Å,与ICSD标准PDF卡70-4430中四方相(101)晶面间距(2.9624 Å)相符合,与Y2O3原料的(222)晶面间距(3.0610 Å)、(400)晶面间距(2.6509 Å)、(440)晶面间距(1.8745 Å)、(622)晶面间距(1.5986 Å)不符合,证实了亚微米晶粒中四方相结构的存在,支持了上述关于单斜相微米晶ZrO2相变后再结晶形成的亚微米颗粒为四方相ZrO2晶粒的猜测。
新相的形成要经历形核、生长的过程。高压的引入可以提高成核率,同时抑制晶粒的生长速率,新相的晶粒尺寸与初始材料的晶粒尺寸无必然联系。本研究中XRD、SEM和TEM表征结果表明,以单斜相微米晶ZrO2为初始材料通过高压相变合成的样品中含有再结晶的纳米和亚微米四方相ZrO2晶粒。高压下以微米晶为初始材料相变合成晶粒尺寸更细的多晶块体陶瓷材料,可以避免以纳米粉末为初始材料在常压和低压(低于1 GPa)烧结过程中纳米晶粒长大的问题,同时克服了以纳米初始粉末为初始材料时存在的表面吸附、易团聚的难题。
以微米晶单斜相ZrO2为初始材料,在5.5 GPa、800~1700 ℃温压条件下通过高压相变法实现了单斜相向四方相的部分转变,获得了小于初始材料晶粒尺寸的亚微米四方相ZrO2晶体的块体陶瓷。
微米晶原料由于表面能低以及表面成核位点较少,在本实验的温压条件下未能实现纯相的亚微米四方相ZrO2多晶块体陶瓷的制备。需进一步探索合适的压强和温度匹配关系,从而实现高致密度、优异力学性能、纯相、亚微米四方相ZrO2多晶块体陶瓷的制备,期望将在超硬材料领域实现应用的以大颗粒粉晶(大单晶或微米晶)为初始材料通过高压相变制备高性能细晶粒多晶块体的方法推广到陶瓷领域。
[1] |
裴晓阳, 彭辉, 贺红亮, 等. 延性金属层裂自由面速度曲线物理涵义解读 [J]. 物理学报, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
PEI X Y, PENG H, HE H L, et al. Discussion on the physical meaning of free surface velocity curve in ductile spallation [J]. Acta Physica Sinica, 2015, 64(3): 034601. doi: 10.7498/aps.64.034601
|
[2] |
CURRAN D R, SEAMAN L, SHOCKEY D A. Dynamic failure of solids [J]. Physics Reports, 1987, 147(5/6): 253–388.
|
[3] |
ANTOUN T H, CURRAN D R, RAZORENOV S V, et al. Spall fracture [M]. New York: Springer-Verlag Press, 2003: 93–94.
|
[4] |
CHEN D N, FAN C L, XIE S G, et al. Study on constitutive relations and spall models for oxygen-free high-conductivity copper under planar shock tests [J]. Journal of Applied Physics, 2007, 101(6): 063532. doi: 10.1063/1.2711405
|
[5] |
MEYERS M A, AIMONE C T. Dynamic fracture (spalling) of metals [J]. Progress in Materials Science, 1983, 28(1): 1–96. doi: 10.1016/0079-6425(83)90003-8
|
[6] |
陈永涛, 唐小军, 李庆忠, 等. 纯铁材料的冲击相变与“反常”层裂 [J]. 爆炸与冲击, 2009, 29(6): 637–641. doi: 10.3321/j.issn:1001-1455.2009.06.014
CHEN Y T, TANG X J, LI Q Z, et al. Phase transition and abnormal spallation in pure iron [J]. Explosion and Shock Waves, 2009, 29(6): 637–641. doi: 10.3321/j.issn:1001-1455.2009.06.014
|
[7] |
THOMAS S A, HAWKINS M, MATTHES M K, et al. Dynamic strength properties and alpha-phase shock Hugoniot of iron and steel [J]. Journal of Applied Physics, 2018, 123(17): 175902. doi: 10.1063/1.5019484
|
[8] |
翟少栋, 李英华, 彭建祥, 等. 平面碰撞与强激光加载下金属铝的层裂行为 [J]. 爆炸与冲击, 2016, 36(6): 767–773. doi: 10.11883/1001-1455(2016)06-0767-07
ZHAI S D, LI Y H, PENG J X, et al. Spall behavior of pure aluminum under plate-impact and high energy laser shock loadings [J]. Explosion and Shock Waves, 2016, 36(6): 767–773. doi: 10.11883/1001-1455(2016)06-0767-07
|
[9] |
KOLLER D D, HIXSON R S, GRAY G T, et al. Influence of shock-wave profile shape on dynamically induced damage in high-purity copper [J]. Journal of Applied Physics, 2005, 98(10): 103518. doi: 10.1063/1.2128493
|
[10] |
张林, 蔡灵仓, 王悟, 等. 钽在冲击载荷下的动态力学特性 [J]. 高压物理学报, 2001, 15(4): 265–270. doi: 10.3969/j.issn.1000-5773.2001.04.005
ZHANG L, CAI L C, WANG W, et al. The dynamic mechanic characteristics of Tantalum under shock loading [J]. Chinese Journal of High Pressure Physic, 2001, 15(4): 265–270. doi: 10.3969/j.issn.1000-5773.2001.04.005
|
[11] |
张凤国, 刘军, 王裴, 等. 三角波强加载下延性金属多次层裂破坏问题 [J]. 爆炸与冲击, 2018, 38(3): 659–664.
ZHANG F G, LIU J, WANG P, et al. Multi-spall in ductile metal under triangular impulse loading [J]. Explosion and Shock Waves, 2018, 38(3): 659–664.
|
[12] |
种涛, 唐志平, 谭福利, 等. 纯铁相变和层裂损伤的数值模拟 [J]. 高压物理学报, 2018, 32(1): 014102.
CHONG T, TANG Z P, TAN F L, et al. Numerical simulation of phase transition and spall of iron [J]. Chinese Journal of High Pressure Physics, 2018, 32(1): 014102.
|
[13] |
贺年丰, 任国武, 陈永涛, 等. 爆轰加载下金属锡层裂破碎数值模拟 [J]. 爆炸与冲击, 2019, 39(4): 042101.
HE N F, REN G W, CHEN Y T, et al. Numerical simulation on spallation and fragmentation of tin under explosive loading [J]. Explosion and Shock Waves, 2019, 39(4): 042101.
|
[14] |
席涛, 范伟, 储根柏, 等. 超高应变率载荷下铜材料层裂特性研究 [J]. 物理学报, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
XI T, FAN W, CHU G B, et al. Spall behavior of copper under ultra-high strain rate loading [J]. Acta Physica Sinica, 2017, 66(4): 040202. doi: 10.7498/aps.66.040202
|
[15] |
GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
|
[16] |
LIU M B, LIU G R. Smoothed particle hydrodynamics (SPH): an overview and recent developments [J]. Archives of Computational Methods in Engineering, 2010, 17(1): 25–76. doi: 10.1007/s11831-010-9040-7
|
[17] |
LIBERSKY L D, PETSCHEK A G. Smooth particle hydrodynamics with strength of materials [M]//TREASE H E, FRITTS M F, CROWLEY W P. Advances in the free-Lagrange method: Springer-Verlag Berlin Heidelberg GmbH, 1991: 248–257.
|
[18] |
徐志宏, 汤文辉, 罗永. 光滑粒子模拟方法在超高速碰撞现象中的应用 [J]. 爆炸与冲击, 2006, 26(1): 53–58. doi: 10.3321/j.issn:1001-1455.2006.01.009
XU Z H, TANG W H, LUO Y. Applications of the smoothed particle hydrodynamics method to hypervelocity impact simulations [J]. Explosion and Shock Waves, 2006, 26(1): 53–58. doi: 10.3321/j.issn:1001-1455.2006.01.009
|
[19] |
ZHOU C E, LIU G R, LOU K Y. Three-dimensional penetration simulation using smoothed particle hydrodynamics [J]. International Journal of Computational Methods, 2007, 4(4): 671–691. doi: 10.1142/S0219876207000972
|
[20] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[21] |
STEINBERG D J, COCHRAN S G, GUINAN M W. A constitutive model for metals applicable at high-strain rate [J]. Journal of Applied Physics, 1980, 51(3): 1498–1504. doi: 10.1063/1.327799
|
[22] |
ZERILLI F J, ARMSTRONG R W. Dislocation-mechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825. doi: 10.1063/1.338024
|
[23] |
王泽平, 恽寿榕. 延性材料层裂的数值模拟 [J]. 爆炸与冲击, 1991, 11(1): 20–25.
WANG Z P, YUN S R. Numerical calculations of spallation in ductile solids [J]. Explosion and Shock Waves, 1991, 11(1): 20–25.
|
[24] |
EAKINS D E, THADHANI N N. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states [J]. Journal of Applied Physics, 2006, 100(7): 073503. doi: 10.1063/1.2354326
|
[25] |
TENG X, WIERZBICKI T. Evaluation of six fracture models in high velocity perforation [J]. Engineering Fracture Mechanics, 2006, 73(12): 1653–1678. doi: 10.1016/j.engfracmech.2006.01.009
|
[26] |
WANG X M, SHI J. Validation of Johnson-Cook plasticity and damage model using impact experiment [J]. International Journal of Impact Engineering, 2013, 60: 67–75. doi: 10.1016/j.ijimpeng.2013.04.010
|
[27] |
樊雪飞, 李伟兵, 王晓鸣, 等. 药型罩材料性能参数对双模毁伤元成型的影响 [J]. 含能材料, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002
FAN X F, LI W B, WANG X M, et al. Effects of liner’s material properties on the forming of dual mode damage elements [J]. Chinese Journal of Energetic Materials, 2017, 25(11): 888–895. doi: 10.11943/j.issn.1006-9941.2017.11.002
|
[28] |
MIRZAIE T, MIRZADEH H, CABRERA J M. A simple Zerilli-Armstrong constitutive equation for modeling and prediction of hot deformation flow stress of steels [J]. Mechanics of Materials, 2016, 94: 38–45. doi: 10.1016/j.mechmat.2015.11.013
|
[29] |
ABED F H, VOYIADJIS G Z. A consistent modified Zerilli-Armstrong flow stress model for BCC and FCC metals for elevated temperatures [J]. Acta Mechanica, 2005, 175(1/2/3/4): 1–18.
|
[30] |
PRESTON D L, TONKS D L, WALLACE D C. Model of plastic deformation for extreme loading conditions [J]. Journal of Applied Physics, 2003, 93(1): 211–220. doi: 10.1063/1.1524706
|
[31] |
MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980: 136.
|
[32] |
RINEHART J S. Some quantitative data bearing on the scabbing of metals under explosive attack [J]. Journal of Applied Physics, 1951, 22(5): 555–560. doi: 10.1063/1.1700005
|
[33] |
GRADY D E. The spall strength of condensed matter [J]. Journal of the Mechanics and Physics of Solids, 1988, 36(3): 353–384. doi: 10.1016/0022-5096(88)90015-4
|
[34] |
邸德宁, 陈小伟. 碎片云SPH方法数值模拟中的材料失效模型 [J]. 爆炸与冲击, 2018, 38(5): 948–956. doi: 10.11883/bzycj-2017-0328
DI D N, CHEN X W. Material failure models in SPH simulation of debris cloud [J]. Explosion and Shock Waves, 2018, 38(5): 948–956. doi: 10.11883/bzycj-2017-0328
|
[35] |
NOVIKOV S A. Spall strength of materials under shock load [J]. Journal of Applied Mechanics and Technical Physics, 1967, 3: 109–120.
|
[36] |
DALTON D A, BREWER J L, BERNSTEIN A C, et al. Laser-induced spallation of aluminum and Al alloys at strain rates above 2 × 106 s−1 [J]. Journal of Applied Physics, 2008, 104(1): 013526. doi: 10.1063/1.2949276
|
[37] |
THAM C Y. Reinforced concrete perforation and penetration simulation using AUTODYN-3D [J]. Finite Elements in Analysis and Design, 2005, 41(14): 1401–1410. doi: 10.1016/j.finel.2004.08.003
|
[38] |
石永相, 施冬梅, 李文钊, 等. ZrCuNiAlAg块体非晶合金JH-2模型研究 [J]. 爆炸与冲击, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
SHI Y X, SHI D M, LI W Z, YU Z T, et al. Study on JH-2 model of the ZrCuNiAlAg bulk amorphous alloy [J]. Explosion and Shock Waves, 2019, 39(9): 093104. doi: 10.11883/bzycj-2018-0221
|
[39] |
陈龙明, 李志斌, 陈荣. 装药动爆冲击波特性研究 [J]. 爆炸与冲击, 2020, 40(1): 013201. doi: 10.11883/bzycj-2019-0029
CHEN L M, LI Z B, CHEN R. Characteristics of dynamic explosive shock wave of moving charge [J]. Explosion and Shock Waves, 2020, 40(1): 013201. doi: 10.11883/bzycj-2019-0029
|
[40] |
王韫泽, 王树山, 魏平亮, 等. 穿甲弹异物阻滞膛炸机理数值仿真分析 [J]. 兵工学报, 2018, 39(5): 859–866. doi: 10.3969/j.issn.1000-1093.2018.05.004
WANG Y Z, WANG S S, WEI P L, et al. Numerical simulation and analysis of bore premature of armor piercer caused by foreign matter obstruction [J]. Acta Armamentarii, 2018, 39(5): 859–866. doi: 10.3969/j.issn.1000-1093.2018.05.004
|
[41] |
HUANG H, JIAO Q J, NIE J X, et al. Numerical modeling of underwater explosion by one-dimensional ANSYS-AUTODYN [J]. Journal of Energetic Materials, 2011, 29(4): 292–325. doi: 10.1080/07370652.2010.527898
|
[42] |
孙晓旺, 章杰, 王肖钧, 等. 应力波数值计算中的SPH方法 [J]. 爆炸与冲击, 2017, 37(1): 21–26. doi: 10.11883/1001-1455(2017)01-0021-06
SUN X W, ZHANG J, WANG X J, et al. Application of SPH in stress wave simulation [J]. Explosion and Shock Waves, 2017, 37(1): 21–26. doi: 10.11883/1001-1455(2017)01-0021-06
|
[43] |
CZARNOTA C, JACQUES N, MERCIER S, et al. Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum [J]. Journal of the Mechanics and Physics of Solid, 2008, 56(4): 1624–1650. doi: 10.1016/j.jmps.2007.07.017
|
[44] |
ARMSTRONG R W, WALLEY S M. High strain rate properties of metals and alloys [J]. International Materials Reviews, 2008, 53(3): 105–128. doi: 10.1179/174328008X277795
|
[45] |
张林. 延性材料冲击响应: 动态损伤与断裂、结构相变的新模型 [D]. 绵阳: 中国工程物理研究院, 2005.
|
[46] |
STEPANOV G V, ROMANCHENKO V I, ASTANIN V V. Experimental determination of failure stresses under spallation in elastic-plastic waves [J]. Probl Strength, 1977, 8: 96–99.
|
[47] |
KANEL G I. Dynamic strength of materials [J]. Fatigue & Fracture of Engineering Materials & Structures, 1999, 22(11): 1011–1020.
|
[48] |
KANEL G I, FORTOV V E, RAZORENOV S V. Shock-wave phenomena and the properties of condensed matter [M]. New York: Springer, 2004.
|
[49] |
KANEL G I, RAZORENOV S V, BOGATCH A, et al. Simulation of spall fracture of aluminum and magnesium over a wide range of load duration and temperature [J]. International Journal of Impact Engineering, 1997, 20(6/7/8/9/10): 467–478.
|