ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
HE Huijuan, YAN Xiaojie, SHU Xuefeng, XIAO Gesheng, HAO Xin, LI Zhigang. Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
Citation:
HE Huijuan, YAN Xiaojie, SHU Xuefeng, XIAO Gesheng, HAO Xin, LI Zhigang. Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623
In the application environment, the surface of the ultra-high-speed aircraft is violently rubbed with the air to make the temperature extremely high. Compared with ordinary ceramics, ultra-high temperature ceramics possess a higher melting point with good oxidation and ablation resistance performance. Therefore, it is particularly interested to be used as thermal protection materials. In this paper, ZrB2-20%SiC ultra-high temperature ceramic materials are prepared by using the spark plasma two-step sintering process of ZrB2 nanopowder and SiC powder at 1700 ℃. The mechanical properties of ZrB2-20%SiC are studied through nanoindentation experiment and three-point bending experiment. The oxidation behavior of ZrB2-20%SiC ultra-high temperature ceramics at four different oxidation temperatures of 1000, 1200, 1400 and 1600 ℃ is analyzed in this paper. The results show that the hardness of the ZrB2-20%SiC ultra-high temperature is 18 GPa, and the elastic modulus is 541 GPa with the fracture toughness of 5.7 MPa·m1/2. When the oxidation temperature is 1600 ℃, the SiC inside the ultra-high temperature ceramic would transform from passive oxidation to active oxidation. As the oxidation temperature increases, the thickness of the ultra-high temperature ceramic oxide layer and the oxidation temperature demonstrate a positive correlation trend.
对于大多数透明材料,当压力达到几百吉帕甚至太帕量级时,冲击波后的状态为流体状态(声速等价于体声速),电介质会发生绝缘体金属相变或者处于电离状态,冲击波阵面表现出很高的反射率,速度干涉仪可以直接对冲击波速度进行测量[10]。在满足一维平面冲击加载条件下,通过靶的设计引入侧向稀疏波(声波),稀疏区域压力下降,受影响区域的冲击波速度下降,冲击波面在稀疏区发生弯曲。利用线成像VISAR(Velocity interferometer system for any reflector)测量冲击波阵面速度历史已经成为冲击动力学领域的常用手段,但是线成像VISAR携带的空间分辨能力却长期被忽略[9, 11]。当线成像VISAR的物镜参数f/D较大时,测量面微小的倾斜会使探测光的回光无法进入成像透镜,导致信号丢失,所以当引入侧向稀疏时,冲击波波阵面发生弯曲,弯曲部分在VISAR像面不会有反射信号,因而可以在记录系统中测到平面冲击波和弯曲冲击波的边界随时间的横向位移。该位移数据反映了冲击波后侧向小扰动的传播过程(声速),可与冲击波速度直接关联,进而获得主冲击绝热线上的连续声速变化曲线。更为详细的原理参考文献[9]。
DU S Y, FANG D N, MENG S H, et al. Summary of the major research project of "Key Basic Scientific Issues of Near Space Vehicles" [J]. Chinese Science Foundation, 2017, 31(2): 109–114.
[2]
SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles [J]. Progress in Aerospace Sciences, 2016, 84: 1–28. doi: 10.1016/j.paerosci.2016.04.001
[3]
TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review [J]. Journal of Materials Science & Technology, 2017, 33(2): 117–130.
YANG Y Z, YANG J L, FANG D N. Research progress on thermal protection materials and structures of hypersonic vehicles [J]. Applied Mathematics and Mechanics, 2008, 29(1): 47–56. doi: 10.3879/j.issn.1000-0887.2008.01.007
FAN Q G, HAO Z B, YAN L S, et al. Research progress of C/SiC composites modified by ultra-high temperature ceramics [J]. Materials Review, 2011, 25(S1): 539–542.
XIANG Y. Fabrication and properties investigation on ultra high temperature ceramics coatings of Cf/SiC composites [D]. Changsha: National University of Defense Technology, 2008: 4−9.
[10]
PADTURE N P. Advanced structural ceramics in aerospace propulsion [J]. Nature Materials, 2016, 15(8): 804–809. doi: 10.1038/nmat4687
SHI J H, LI Y L, LIU Y Y, et al. Mechanical properties of C-SiC composite double-layer protection structure for hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 18–26. doi: 10.11858/gywlxb.2012.01.003
[12]
HU P, WANG G L, WANG Z. Oxidation mechanism and resistance of ZrB2-SiC composites [J]. Corrosion Science, 2009, 51(11): 2724–2732. doi: 10.1016/j.corsci.2009.07.005
[13]
WILLIAM G F, GREG E H. Ultra-high temperature ceramics: materials for extreme environments [J]. Scripta Materialia, 2016, 129(1): 94–99.
[14]
JIN X C, LI P, HOU C, et al. Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress [J]. Ceramics International, 2019, 45(6): 7278–7285. doi: 10.1016/j.ceramint.2019.01.009
[15]
ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength of hot pressed ZrB2-20vol%SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes [J]. Journal of the European Ceramic Society, 2013, 33(10): 1609–1614. doi: 10.1016/j.jeurceramsoc.2013.03.001
CHEN X W. Preparation and properties of Cf/SiC-ZrC-ZrB2 ultra-high temperature ceramic matrix composites [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 5−8.
[17]
WILLIAMS P A, SAKIDJA R, PEREPEZKO J H, et al. Oxidation of ZrB2-SiC ultra-high temperature composites over a wide range of SiC content [J]. Journal of the European Ceramic Society, 2012, 32(14): 3875–3883. doi: 10.1016/j.jeurceramsoc.2012.05.021
LIU Y H, YU L L, XU Y L, et al. Study on the thermodynamic characteristics of electrical spark discharge channel erosion of insulating engineering ceramics [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 91–97. doi: 10.3969/j.issn.1000-5773.2009.02.003
[20]
HU P, GUI K, HONG W, et al. Preparation of ZrB2-SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders [J]. Materials Letters, 2017, 200(1): 14–17.
[21]
OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
WAN D T, WEI Y J, BAO Y W, et al. Comparative analysis of accuracy and convenience of ceramic fracture toughness testing methods [J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1080–1088.
GONG J H, GUAN Z D. Research progress of ceramic material fracture toughness testing technology in China [J]. Bulletin of the Chinese Ceramic Society, 1996, 15(1): 53–57.
[24]
ADAM L C, WILLIAM F G F, GREGORY E H, et al. High-strength zirconium diboride-based ceramics [J]. Journal of the American Ceramic Society, 2004, 87(6): 1170–1172. doi: 10.1111/j.1551-2916.2004.01170.x
[25]
PATEL M, REDDY J J, PRASAD V V B, et al. Strength of hot pressed ZrB2-SiC composite after exposure to high temperatures (1 000-1 700 ℃) [J]. Journal of the European Ceramic Society, 2012, 32(16): 4455–4467. doi: 10.1016/j.jeurceramsoc.2012.06.025
[26]
ZHU S, WILLIAM G F, GREGORY E H. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics [J]. Journal of the European Ceramic Society, 2007, 27(4): 2077–2083. doi: 10.1016/j.jeurceramsoc.2006.07.003
[27]
WU W W, SAKKA Y, SUZUKI T S, et al. Microstructure and anisotropic properties of textured ZrB2 and ZrB2-MoSi2 ceramics prepared by strong magnetic field alignment [J]. International Journal of Applied Ceramic Technology, 2014, 11(2): 218–227. doi: 10.1111/ijac.12061
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524
ZHANG Hongping, ZHANG Li, LUO Binqiang, LI Jianming, WANG Feng, TAN Fuli, LI Mu. High Precision Targets Fabrication for Sound Velocity Measurements in Terapascal Pressure[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033401. doi: 10.11858/gywlxb.20200524