Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
HE Huijuan, YAN Xiaojie, SHU Xuefeng, XIAO Gesheng, HAO Xin, LI Zhigang. Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623
Citation: HE Huijuan, YAN Xiaojie, SHU Xuefeng, XIAO Gesheng, HAO Xin, LI Zhigang. Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024104. doi: 10.11858/gywlxb.20200623

Mechanical Properties and Oxidation Behavior of ZrB2-SiC Ultra-High Temperature Ceramics Prepared by Spark Plasma Sintering

doi: 10.11858/gywlxb.20200623
  • Received Date: 09 Oct 2020
  • Rev Recd Date: 06 Nov 2020
  • In the application environment, the surface of the ultra-high-speed aircraft is violently rubbed with the air to make the temperature extremely high. Compared with ordinary ceramics, ultra-high temperature ceramics possess a higher melting point with good oxidation and ablation resistance performance. Therefore, it is particularly interested to be used as thermal protection materials. In this paper, ZrB2-20%SiC ultra-high temperature ceramic materials are prepared by using the spark plasma two-step sintering process of ZrB2 nanopowder and SiC powder at 1700 ℃. The mechanical properties of ZrB2-20%SiC are studied through nanoindentation experiment and three-point bending experiment. The oxidation behavior of ZrB2-20%SiC ultra-high temperature ceramics at four different oxidation temperatures of 1000, 1200, 1400 and 1600 ℃ is analyzed in this paper. The results show that the hardness of the ZrB2-20%SiC ultra-high temperature is 18 GPa, and the elastic modulus is 541 GPa with the fracture toughness of 5.7 MPa·m1/2. When the oxidation temperature is 1600 ℃, the SiC inside the ultra-high temperature ceramic would transform from passive oxidation to active oxidation. As the oxidation temperature increases, the thickness of the ultra-high temperature ceramic oxide layer and the oxidation temperature demonstrate a positive correlation trend.

     

  • loading
  • [1]
    杜善义, 方岱宁, 孟松鹤, 等. “近空间飞行器的关键基础科学问题”重大研究计划结题综述 [J]. 中国科学基金, 2017, 31(2): 109–114.

    DU S Y, FANG D N, MENG S H, et al. Summary of the major research project of "Key Basic Scientific Issues of Near Space Vehicles" [J]. Chinese Science Foundation, 2017, 31(2): 109–114.
    [2]
    SZIROCZAK D, SMITH H. A review of design issues specific to hypersonic flight vehicles [J]. Progress in Aerospace Sciences, 2016, 84: 1–28. doi: 10.1016/j.paerosci.2016.04.001
    [3]
    TANG S F, HU C L. Design, preparation and properties of carbon fiber reinforced ultra-high temperature ceramic composites for aerospace applications: a review [J]. Journal of Materials Science & Technology, 2017, 33(2): 117–130.
    [4]
    韩洪涛, 王璐, 郑义. 2019年国外高超声速技术发展回顾 [J]. 飞航导弹, 2014(3): 16–20.

    HAN H T, WANG L, ZHENG Y. Review of the development of foreign hypersonic technology in 2019 [J]. Flying Missile, 2014(3): 16–20.
    [5]
    廖龙文, 曾鹏, 陈军燕, 等. 高超声速飞行器发展困境分析 [J]. 飞航导弹, 2019(12): 22–27.

    LIAO L W, ZENG P, CHEN J Y, et al. Analysis on the development dilemma of hypersonic vehicles [J]. Flying Missile, 2019(12): 22–27.
    [6]
    张幸红, 胡平, 韩杰才, 等. 超高温陶瓷复合材料的研究进展 [J]. 科学通报, 2015, 60(3): 257–266.

    ZHANG X H, HU P, HAN J C, et al. Research progress of ultra-high temperature ceramic composite materials [J]. Science Bulletin, 2015, 60(3): 257–266.
    [7]
    杨亚政, 杨嘉陵, 方岱宁. 高超声速飞行器热防护材料与结构的研究进展 [J]. 应用数学和力学, 2008, 29(1): 47–56. doi: 10.3879/j.issn.1000-0887.2008.01.007

    YANG Y Z, YANG J L, FANG D N. Research progress on thermal protection materials and structures of hypersonic vehicles [J]. Applied Mathematics and Mechanics, 2008, 29(1): 47–56. doi: 10.3879/j.issn.1000-0887.2008.01.007
    [8]
    樊乾国, 郝志彪, 闫联生, 等. 超高温陶瓷改性C/SiC复合材料的研究进展 [J]. 材料导报, 2011, 25(S1): 539–542.

    FAN Q G, HAO Z B, YAN L S, et al. Research progress of C/SiC composites modified by ultra-high temperature ceramics [J]. Materials Review, 2011, 25(S1): 539–542.
    [9]
    向阳. Cf/SiC复合材料超高温陶瓷涂层的制备及性能研究 [D].长沙: 国防科学技术大学, 2008: 4−9.

    XIANG Y. Fabrication and properties investigation on ultra high temperature ceramics coatings of Cf/SiC composites [D]. Changsha: National University of Defense Technology, 2008: 4−9.
    [10]
    PADTURE N P. Advanced structural ceramics in aerospace propulsion [J]. Nature Materials, 2016, 15(8): 804–809. doi: 10.1038/nmat4687
    [11]
    史姣红, 李玉龙, 刘元镛, 等. 超高速碰撞C-SiC复合材料双层防护结构的力学特性 [J]. 高压物理学报, 2012, 26(1): 18–26. doi: 10.11858/gywlxb.2012.01.003

    SHI J H, LI Y L, LIU Y Y, et al. Mechanical properties of C-SiC composite double-layer protection structure for hypervelocity impact [J]. Chinese Journal of High Pressure Physics, 2012, 26(1): 18–26. doi: 10.11858/gywlxb.2012.01.003
    [12]
    HU P, WANG G L, WANG Z. Oxidation mechanism and resistance of ZrB2-SiC composites [J]. Corrosion Science, 2009, 51(11): 2724–2732. doi: 10.1016/j.corsci.2009.07.005
    [13]
    WILLIAM G F, GREG E H. Ultra-high temperature ceramics: materials for extreme environments [J]. Scripta Materialia, 2016, 129(1): 94–99.
    [14]
    JIN X C, LI P, HOU C, et al. Oxidation behaviors of ZrB2 based ultra-high temperature ceramics under compressive stress [J]. Ceramics International, 2019, 45(6): 7278–7285. doi: 10.1016/j.ceramint.2019.01.009
    [15]
    ZOU J, ZHANG G J, VLEUGELS J, et al. High temperature strength of hot pressed ZrB2-20vol%SiC ceramics based on ZrB2 starting powders prepared by different carbo/boro-thermal reduction routes [J]. Journal of the European Ceramic Society, 2013, 33(10): 1609–1614. doi: 10.1016/j.jeurceramsoc.2013.03.001
    [16]
    陈小武. Cf/SiC-ZrC-ZrB2超高温陶瓷基复合材料的制备及性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2018: 5−8.

    CHEN X W. Preparation and properties of Cf/SiC-ZrC-ZrB2 ultra-high temperature ceramic matrix composites [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2018: 5−8.
    [17]
    WILLIAMS P A, SAKIDJA R, PEREPEZKO J H, et al. Oxidation of ZrB2-SiC ultra-high temperature composites over a wide range of SiC content [J]. Journal of the European Ceramic Society, 2012, 32(14): 3875–3883. doi: 10.1016/j.jeurceramsoc.2012.05.021
    [18]
    王秀芬, 周曦亚. 放电等离子烧结技术 [J]. 中国陶瓷, 2006, 42(7): 14–16. doi: 10.3969/j.issn.1001-9642.2006.07.005

    WANG X F, ZHOU X Y. Spark plasma sintering technology [J]. Chinese Ceramics, 2006, 42(7): 14–16. doi: 10.3969/j.issn.1001-9642.2006.07.005
    [19]
    刘永红, 于丽丽, 徐玉龙, 等. 电火花放电通道蚀除绝缘工程陶瓷的热力学特性研究 [J]. 高压物理学报, 2009, 23(2): 91–97. doi: 10.3969/j.issn.1000-5773.2009.02.003

    LIU Y H, YU L L, XU Y L, et al. Study on the thermodynamic characteristics of electrical spark discharge channel erosion of insulating engineering ceramics [J]. Chinese Journal of High Pressure Physics, 2009, 23(2): 91–97. doi: 10.3969/j.issn.1000-5773.2009.02.003
    [20]
    HU P, GUI K, HONG W, et al. Preparation of ZrB2-SiC ceramics by single-step and optimized two-step hot pressing using nanosized ZrB2 powders [J]. Materials Letters, 2017, 200(1): 14–17.
    [21]
    OLIVER W C, PHARR G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments [J]. Journal of Materials Research, 1992, 7(6): 1564–1583. doi: 10.1557/JMR.1992.1564
    [22]
    万德田, 魏永金, 包亦望, 等. 陶瓷断裂韧性测试方法准确性和简便性比较分析 [J]. 硅酸盐学报, 2019, 47(8): 1080–1088.

    WAN D T, WEI Y J, BAO Y W, et al. Comparative analysis of accuracy and convenience of ceramic fracture toughness testing methods [J]. Journal of the Chinese Ceramic Society, 2019, 47(8): 1080–1088.
    [23]
    龚江宏, 关振铎. 陶瓷材料断裂韧性测试技术在中国的研究进展 [J]. 硅酸盐通报, 1996, 15(1): 53–57.

    GONG J H, GUAN Z D. Research progress of ceramic material fracture toughness testing technology in China [J]. Bulletin of the Chinese Ceramic Society, 1996, 15(1): 53–57.
    [24]
    ADAM L C, WILLIAM F G F, GREGORY E H, et al. High-strength zirconium diboride-based ceramics [J]. Journal of the American Ceramic Society, 2004, 87(6): 1170–1172. doi: 10.1111/j.1551-2916.2004.01170.x
    [25]
    PATEL M, REDDY J J, PRASAD V V B, et al. Strength of hot pressed ZrB2-SiC composite after exposure to high temperatures (1 000-1 700 ℃) [J]. Journal of the European Ceramic Society, 2012, 32(16): 4455–4467. doi: 10.1016/j.jeurceramsoc.2012.06.025
    [26]
    ZHU S, WILLIAM G F, GREGORY E H. Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics [J]. Journal of the European Ceramic Society, 2007, 27(4): 2077–2083. doi: 10.1016/j.jeurceramsoc.2006.07.003
    [27]
    WU W W, SAKKA Y, SUZUKI T S, et al. Microstructure and anisotropic properties of textured ZrB2 and ZrB2-MoSi2 ceramics prepared by strong magnetic field alignment [J]. International Journal of Applied Ceramic Technology, 2014, 11(2): 218–227. doi: 10.1111/ijac.12061
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(1)

    Article Metrics

    Article views(5494) PDF downloads(26) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return