Citation: | ZHAO Hailong, WANG Ganghua, XIAO Bo, DUAN Shuchao. Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619 |
[1] |
AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1998, 25(6): 1187–1195.
|
[2] |
SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580
|
[3] |
HUANG C, LI L. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1
|
[4] |
HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256
|
[5] |
MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048
|
[6] |
ROSEN, M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(5): 1690–1699. doi: 10.1063/1.873427
|
[7] |
SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 263–52.
|
[8] |
HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707.
|
[9] |
PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519
|
[10] |
PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 3224–3267.
|
[11] |
SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003
|
[12] |
SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 956.
|
[13] |
SINARS D B, SLUTZ S A. Magnetized liner inertial fusion (MagLIF): the promise and challenges [C]//MagLIF Workshop, Albuquerque, 2012.
|
[14] |
GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003
|
[15] |
AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005
|
[16] |
赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69: 035203. doi: 10.7498/aps.69.20191411
ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69: 035203. doi: 10.7498/aps.69.20191411
|
[17] |
ATZENI S, JÜRGEN M. The physics of inertial fusion [J]. Plasma Physics & Controlled Fusion, 2004, 46(46): 1805–1805.
|
[18] |
STACEY W M. Fusion plasma analysis [M]. Wiley, 1981: 231.
|
[19] |
BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2002, 40(1): 196–200.
|