Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
ZHAO Hailong, WANG Ganghua, XIAO Bo, DUAN Shuchao. Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619
Citation: ZHAO Hailong, WANG Ganghua, XIAO Bo, DUAN Shuchao. Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 023301. doi: 10.11858/gywlxb.20200619

Physical Process and Characteristic Parameters in Magnetized Liner Inertial Fusion

doi: 10.11858/gywlxb.20200619
  • Received Date: 24 Sep 2020
  • Rev Recd Date: 19 Oct 2020
  • Magnetized liner inertial fusion (MagLIF) has combined the advantages of the conventional magnetic confinement fusion (MCF) and inertial confinement fusion (ICF), which could reduce the barrier of controlled fusion and has great potential and feasibility for future applications. In this work, a conventional MagLIF configuration is calculated with 27 MA driving current based on one-dimensional simulation code MIST, distributions and evolvement of characteristic parameters (such as density, pressure, temperature and fusion product) are acquired and demonstrated during three stages of MagLIF process, including initialization, implosion and stagnation. The simulation results provide significant data and support for the assessment and analysis of MagLIF process, which would be helpful to understand how MagLIF behaves from preheat through compression into fusion. Comparison of key parameters between MagLIF and traditional ICF also be shown in this work.

     

  • loading
  • [1]
    AYMAR R. The ITER project [J]. IEEE Transactions on Plasma Science, 1998, 25(6): 1187–1195.
    [2]
    SHIMOMURA Y, SPEARS W. Review of the ITER project [J]. IEEE Transactions on Applied Superconductivity, 2004, 14(2): 1369–1375. doi: 10.1109/TASC.2004.830580
    [3]
    HUANG C, LI L. Magnetic confinement fusion: a brief review [J]. Frontiers in Energy, 2018, 12(2): 305–313. doi: 10.1007/s11708-018-0539-1
    [4]
    HURRICANE O A, SPRINGER P T, PATEL P K, et al. Approaching a burning plasma on the NIF [J]. Physics of Plasmas, 2019, 26(5): 052704. doi: 10.1063/1.5087256
    [5]
    MCCRORY R L, MEYERHOFER D D, BETTI R, et al. Progress in direct-drive inertial confinement fusion [J]. Physics of Plasmas, 2008, 15(5): 055503. doi: 10.1063/1.2837048
    [6]
    ROSEN, M D. The physics issues that determine inertial confinement fusion target gain and driver requirements: a tutorial [J]. Physics of Plasmas, 1999, 6(5): 1690–1699. doi: 10.1063/1.873427
    [7]
    SLUTZ S A, HERRMANN M C, VESEY R A, et al. Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field [J]. Physics of Plasmas, 2010, 17(5): 263–52.
    [8]
    HARVEY-THOMPSON A J, GEISSEL M, JENNINGS C A, et al. Constraining preheat energy deposition in MagLIF experiments with multi-frame shadowgraphy [J]. Physics of Plasmas, 2019, 26(3): 032707.
    [9]
    PARADELA J, GARCÍA-RUBIO F, SANZ J. Alpha heating enhancement in MagLIF targets: a simple analytic model [J]. Physics of Plasmas, 2019, 26(1): 012705. doi: 10.1063/1.5079519
    [10]
    PERKINS L J, LOGAN B G, ZIMMERMAN G B, et al. Two-dimensional simulations of thermonuclear burn in ignition-scale inertial confinement fusion targets under compressed axial magnetic fields [J]. Physics of Plasmas, 2013, 20(7): 3224–3267.
    [11]
    SLUTZ S A, VESEY R A. High-gain magnetized inertial fusion [J]. Physical Review Letters, 2012, 108(2): 025003. doi: 10.1103/PhysRevLett.108.025003
    [12]
    SEFKOW A B, SLUTZ S A, KONING J M, et al. Design of magnetized liner inertial fusion experiments using the Z facility [J]. Physics of Plasmas, 2014, 21(7): 956.
    [13]
    SINARS D B, SLUTZ S A. Magnetized liner inertial fusion (MagLIF): the promise and challenges [C]//MagLIF Workshop, Albuquerque, 2012.
    [14]
    GOMEZ M R, SLUTZ S A, SEFKOW A B, et al. Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion [J]. Physical Review Letters, 2014, 113(15): 155003. doi: 10.1103/PhysRevLett.113.155003
    [15]
    AWE T J, MCBRIDE R D, JENNINGS C A, et al. Observations of modified three-dimensional instability structure for imploding z-pinch liners that are premagnetized with an axial field [J]. Physical Review Letters, 2013, 111(23): 235005. doi: 10.1103/PhysRevLett.111.235005
    [16]
    赵海龙, 肖波, 王刚华, 等. 磁化套筒惯性聚变一维集成化数值模拟 [J]. 物理学报, 2020, 69: 035203. doi: 10.7498/aps.69.20191411

    ZHAO H L, XIAO B, WANG G H, et al. One-dimensional integrated simulations of magnetized liner inertial fusion [J]. Acta Physica Sinica, 2020, 69: 035203. doi: 10.7498/aps.69.20191411
    [17]
    ATZENI S, JÜRGEN M. The physics of inertial fusion [J]. Plasma Physics & Controlled Fusion, 2004, 46(46): 1805–1805.
    [18]
    STACEY W M. Fusion plasma analysis [M]. Wiley, 1981: 231.
    [19]
    BASKO M M, KEMP A J, MEYER-TER-VEHN J. Ignition conditions for magnetized target fusion in cylindrical geometry [J]. Nuclear Fusion, 2002, 40(1): 196–200.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(4508) PDF downloads(28) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return