Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
SHI Zhentian, YANG Xujia, WANG Haoyang, QIAO Li. Superconducting Transition of Nb3Sn Single Crystal under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021102. doi: 10.11858/gywlxb.20200615
Citation: SHI Zhentian, YANG Xujia, WANG Haoyang, QIAO Li. Superconducting Transition of Nb3Sn Single Crystal under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021102. doi: 10.11858/gywlxb.20200615

Superconducting Transition of Nb3Sn Single Crystal under High-Pressure

doi: 10.11858/gywlxb.20200615
  • Received Date: 21 Sep 2020
  • Rev Recd Date: 22 Oct 2020
  • Study on the superconducting transition of single crystal Nb3Sn under high pressure is valuable to understand the mechanism of critical performance degradation in superconducting Nb3Sn, which is induced by the mechanical deformation. In this paper, on the basis of molecular dynamics simulations, we studied high-pressure induced atomic scale deformation and crystal lattice distortions of single crystal Nb3Sn. Following this analysis, we established a superconducting transition model of single crystal Nb3Sn under high pressure. There is a good agreement between model predictions and experimental observations. The results show that the high pressure induces obvious lattice distortions in single crystal Nb3Sn, the lattice structure, however, remains intact. Pressure-induced change in density of states at the Fermi surface is shown to play a dominate role in superconducting transition in single crystal Nb3Sn. The results lay a foundation of understanding the high pressure induced superconducting transition of polycrystalline Nb3Sn. At the same time, they provide some detailed information on understanding the mechanism controlling for strain-induced critical performance degradation in Nb3Sn.

     

  • loading
  • [1]
    梁明, 张平祥, 卢亚锋, 等. 磁体用Nb3Sn超导体研究进展 [J]. 材料导报, 2006, 20(12): 1–4.

    LIANG M, ZHANG P Y, LU Y F, et al. Advances in Nb3Sn superconductor for magnet application [J]. Materials Review, 2006, 20(12): 1–4.
    [2]
    周又和, 王省哲. ITER超导磁体设计与制备中的若干关键力学问题 [J]. 中国科学(物理学·力学·天文学), 2013, 43(15): 1558–1569.

    ZHOU Y H, WANG X Z. Review on some key issues related to design and fabrication of superconducting magnets in ITER [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(15): 1558–1569.
    [3]
    许少峰, 刘旭峰, 宋云涛. Nb3Sn超导磁体低温冷却设计 [J]. 原子能科学技术, 2013, 43(15): 147–150.

    XU S F, LIU X F, SONG Y T. Cryogenic cooling design of Nb3Sn superconducting magnet [J]. Atomic Energy Science and Technology, 2013, 43(15): 147–150.
    [4]
    王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社, 2008.

    WANG Q L. High-field superconducting magnets science [M]. Beijing: Science Press, 2008.
    [5]
    唐先德, 李春广, 武玉, 等. 核聚变用内Sn法Nb3Sn股线的制备与性能 [J]. 低温物理学报, 2005, 27(A2): 936–931.

    TANG X D, LI C G, WU Y, et al. The manufacture and properties of the Nb3Sn strand for ITER by the internal tin process [J]. Chinese Journal of Low Temperature Physics, 2005, 27(A2): 936–931.
    [6]
    蒋华伟. 应变对Nb3Sn股线临界特性退化影响 [J]. 稀有金属材料与工程, 2015, 44(6): 1423–1426.

    JIANG H W. Effect of strain on critical properties degradation of Nb3Sn strand [J]. Rare Metal Materials and Engineering, 2015, 44(6): 1423–1426.
    [7]
    LIU B, WU Y, LIU F, et al. Axial strain characterization of the Nb3Sn strand used for China's TF conductor [J]. Fusion Engineering & Design, 2011, 86(1): 1–4.
    [8]
    TAYLOR J D M, HAMPSHIRE D P, et al. The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires [J]. Superconductor Science and Technology, 2006, 18(12): 241–252.
    [9]
    SUMMERS L T, GUINAN M W, MILLER J R, et al. A model for the prediction of Niobium-Tin (Nb3Sn) critical current as a function of field, temperature, strain, and radiation damage [J]. IEEE Transactions on Magnetics, 1991, 27(2/3): 2041–2044.
    [10]
    HAKEN T, BERNARD, GODEKE A, et al. The influence of compressive and tensile axial strain on the critical properties of Nb3Sn conductors [J]. IEEE Transactions on Applied Superconductivity, 1995, 5(5): 1909–1912.
    [11]
    EKIN J W. Unified scaling law for flux pinning in practical superconductors: I. separability postulate, raw scaling data and parameterization at moderate strains [J]. Superconductor Science & Technology, 2010, 23(8): 083001.
    [12]
    EKIN J W. Strain-scaling law for flux pinning in practical superconductors. part 1: basic relationship and application to niobium-tin (Nb3Sn) conductors [J]. Cryogenics, 1980, 20(11): 611–624. doi: 10.1016/0011-2275(80)90191-5
    [13]
    CHU C W. Pressure-enhanced lattice transformation in Nb3Sn single crystal [J]. Physical Review Letters, 1974, 33(21): 1283–1286. doi: 10.1103/PhysRevLett.33.1283
    [14]
    TANAKA S, HANDOKO, MIYAKE A, et al. Superconducting and martensitic transitions of V3Si and Nb3Sn under high pressure [J]. Journal of the Physical Society of Japan, 2012: 81.
    [15]
    LIM K C, THOMPSON J D, WEBB G W. Electronic density of states and Tc in niobium-tin (Nb3Sn) under pressure [J]. Physical Review B: Condens Matter, 1983, 27(5): 2781–2787. doi: 10.1103/PhysRevB.27.2781
    [16]
    REN Z, GAMPERLE L, FETE A, et al. Evolution of T2 resistivity and superconductivity in Nb3Sn under pressure [J]. Physical Review B, 2017, 95(18): 184503. doi: 10.1103/PhysRevB.95.184503
    [17]
    WOODARD D W, CODY G D. Anomalous resistivity of Nb3Sn [J]. Modern Language Review, 1964, 136(1): 166–168.
    [18]
    QIAO L, YANG L, ZHENG X J. A simple phenomenological model for characterizing the coupled effect of strain states and temperature on the normal-state electrical resistivity in Nb3Sn superconductors [J]. Journal of Applied Physics, 2013, 114(3): 1–7.
    [19]
    WEBB G, FISK Z, ENGELHARDT J, et al. Apparent T2 dependence of normal-state resistivities and lattice heat-capacities of high-T superconductors [J]. Bulletin of the American Physical Society, 1976, 21(11): 1285.
    [20]
    GURVITCH M, GHOSH A K, LUTZ H, et al. Low-temperature resistivity of ordered and disordered A15 compounds [J]. Physical Review B, 1980, 22(1): 128–136. doi: 10.1103/PhysRevB.22.128
    [21]
    ZHANG Y, ASHCRAFT R, MENDELEV M I, et al. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy [J]. The Journal of Chemical Physics, 2016, 145(20): 204505. doi: 10.1063/1.4968212
    [22]
    KO W S, KIM D H, KWON Y J, et al. Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential [J]. Metals-Basel, 2018, 8(11): 900. doi: 10.3390/met8110900
    [23]
    CHUDINOV V G, GOGOLIN V P, GOSHCHITSKII B N, et al. Simulation of collision cascades in intermetallic Nb3Sn compounds [J]. Physica Status Solidi C, 1981, 67(1): 61–67. doi: 10.1002/pssa.2210670103
    [24]
    PAPADIMITRIOU I, UTTON C, TSAKIROPOULOS P. Ab initio investigation of the intermetallics in the Nb-Sn binary system [J]. Acta Materialia, 2015, 86: 23–33. doi: 10.1016/j.actamat.2014.12.017
    [25]
    SUNDARESWARI M, RAMASUBRAMANIAN S, RAJAGOPALAN M. Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds-first principles DFT study [J]. Solid State Communications, 2010, 150(41/42): 2057–2060.
    [26]
    ZHANG R, GAO P F, WANG X Z, et al. First-principles study on elastic and superconducting properties of Nb3Sn and NbAl under hydrostatic pressure [J]. AIP Advances, 2015, 5(10): 1–9.
    [27]
    WIESMANN H, GURVITCH M, LUTZ H, et al. Simple model for characterizing the electrical resistivity in A-15 superconductors [J]. Physical Review Letters, 1977, 38(14): 782–785. doi: 10.1103/PhysRevLett.38.782
    [28]
    YANG L, DING H, ZHANG X, et al. A multiple-field coupled resistive transition model for superconducting Nb3Sn [J]. AIP Advances, 2016, 6(12): 125101. doi: 10.1063/1.4971214
    [29]
    CATON R, VISWANATHAN R. Analysis of the normal-state resistivity for the neutron-irradiated A15 superconductors vanadium silicide (V3Si), niobium-platinum (Nb3Pt), and niobium aluminide (Nb3Al) [J]. Physical Review B: Condens Matter, 1982, 25(1): 179–193. doi: 10.1103/PhysRevB.25.179
    [30]
    RAMAKRISHNAN S, NIGAM A K, CHANDRA G. Resistivity and magnetoresistance studies on superconducting A15 V3Ga, V3Au, and V3Pt compounds [J]. Physical Review B: Condens Matter, 1986, 34(9): 6166–6171. doi: 10.1103/PhysRevB.34.6166
    [31]
    QIAO L, ZHANG X, DING H, et al. An intrinsic model for strain tensor effects on the density of states in A15 Nb3Sn [J]. Cryogenics, 2019, 97: 50–54. doi: 10.1016/j.cryogenics.2018.11.002
    [32]
    KIM D H, GRAY K E, KAMPWIRTH R T, et al. Possible origins of resistive tails and critical currents in high-temperature superconductors in a magnetic field [J]. Physical Review B: Condens Matter, 1990, 42(10): 6249–6258. doi: 10.1103/PhysRevB.42.6249
    [33]
    GODEKE A, JEWELL M C, GOLUBOV A A, et al. Inconsistencies between extrapolated and actual critical fields in Nb3Sn wires as demonstrated by direct measurements of Hc2, H* and Tc [J]. Superconductor Science & Technology, 2003, 16(9): 1019–1025.
    [34]
    何宇新, 乔力, 石震天, 等. 静水压作用下Nb3Sn多晶体超导临界温度退化的耦合模型 [J]. 固体力学学报, 2020, 41(4): 334–342.

    HE Y X, QIAO L, SHI Z T, et al. A coupling model for hydrostatic pressure-induced critical temperature degradation of Nb3Sn polycrystalline superconductors [J]. Acta Mechanica Solida Sinica, 2020, 41(4): 334–342.
    [35]
    TINKHAM M. Resistive transition of high-temperature superconductors [J]. Physical Review Letters, 1988, 61(14): 1658–1661. doi: 10.1103/PhysRevLett.61.1658
    [36]
    CHU C, TESTARDI L. Hydrostatic-pressure enhanced lattice transformation and hydrostatic-pressure suppressed superconducting transition in Nb3Sn single-crystal [J]. Bulletin of the American Physical Society, 1974, 19(3): 228.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(4330) PDF downloads(50) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return