Citation: | SHI Zhentian, YANG Xujia, WANG Haoyang, QIAO Li. Superconducting Transition of Nb3Sn Single Crystal under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021102. doi: 10.11858/gywlxb.20200615 |
[1] |
梁明, 张平祥, 卢亚锋, 等. 磁体用Nb3Sn超导体研究进展 [J]. 材料导报, 2006, 20(12): 1–4.
LIANG M, ZHANG P Y, LU Y F, et al. Advances in Nb3Sn superconductor for magnet application [J]. Materials Review, 2006, 20(12): 1–4.
|
[2] |
周又和, 王省哲. ITER超导磁体设计与制备中的若干关键力学问题 [J]. 中国科学(物理学·力学·天文学), 2013, 43(15): 1558–1569.
ZHOU Y H, WANG X Z. Review on some key issues related to design and fabrication of superconducting magnets in ITER [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(15): 1558–1569.
|
[3] |
许少峰, 刘旭峰, 宋云涛. Nb3Sn超导磁体低温冷却设计 [J]. 原子能科学技术, 2013, 43(15): 147–150.
XU S F, LIU X F, SONG Y T. Cryogenic cooling design of Nb3Sn superconducting magnet [J]. Atomic Energy Science and Technology, 2013, 43(15): 147–150.
|
[4] |
王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社, 2008.
WANG Q L. High-field superconducting magnets science [M]. Beijing: Science Press, 2008.
|
[5] |
唐先德, 李春广, 武玉, 等. 核聚变用内Sn法Nb3Sn股线的制备与性能 [J]. 低温物理学报, 2005, 27(A2): 936–931.
TANG X D, LI C G, WU Y, et al. The manufacture and properties of the Nb3Sn strand for ITER by the internal tin process [J]. Chinese Journal of Low Temperature Physics, 2005, 27(A2): 936–931.
|
[6] |
蒋华伟. 应变对Nb3Sn股线临界特性退化影响 [J]. 稀有金属材料与工程, 2015, 44(6): 1423–1426.
JIANG H W. Effect of strain on critical properties degradation of Nb3Sn strand [J]. Rare Metal Materials and Engineering, 2015, 44(6): 1423–1426.
|
[7] |
LIU B, WU Y, LIU F, et al. Axial strain characterization of the Nb3Sn strand used for China's TF conductor [J]. Fusion Engineering & Design, 2011, 86(1): 1–4.
|
[8] |
TAYLOR J D M, HAMPSHIRE D P, et al. The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires [J]. Superconductor Science and Technology, 2006, 18(12): 241–252.
|
[9] |
SUMMERS L T, GUINAN M W, MILLER J R, et al. A model for the prediction of Niobium-Tin (Nb3Sn) critical current as a function of field, temperature, strain, and radiation damage [J]. IEEE Transactions on Magnetics, 1991, 27(2/3): 2041–2044.
|
[10] |
HAKEN T, BERNARD, GODEKE A, et al. The influence of compressive and tensile axial strain on the critical properties of Nb3Sn conductors [J]. IEEE Transactions on Applied Superconductivity, 1995, 5(5): 1909–1912.
|
[11] |
EKIN J W. Unified scaling law for flux pinning in practical superconductors: I. separability postulate, raw scaling data and parameterization at moderate strains [J]. Superconductor Science & Technology, 2010, 23(8): 083001.
|
[12] |
EKIN J W. Strain-scaling law for flux pinning in practical superconductors. part 1: basic relationship and application to niobium-tin (Nb3Sn) conductors [J]. Cryogenics, 1980, 20(11): 611–624. doi: 10.1016/0011-2275(80)90191-5
|
[13] |
CHU C W. Pressure-enhanced lattice transformation in Nb3Sn single crystal [J]. Physical Review Letters, 1974, 33(21): 1283–1286. doi: 10.1103/PhysRevLett.33.1283
|
[14] |
TANAKA S, HANDOKO, MIYAKE A, et al. Superconducting and martensitic transitions of V3Si and Nb3Sn under high pressure [J]. Journal of the Physical Society of Japan, 2012: 81.
|
[15] |
LIM K C, THOMPSON J D, WEBB G W. Electronic density of states and Tc in niobium-tin (Nb3Sn) under pressure [J]. Physical Review B: Condens Matter, 1983, 27(5): 2781–2787. doi: 10.1103/PhysRevB.27.2781
|
[16] |
REN Z, GAMPERLE L, FETE A, et al. Evolution of T2 resistivity and superconductivity in Nb3Sn under pressure [J]. Physical Review B, 2017, 95(18): 184503. doi: 10.1103/PhysRevB.95.184503
|
[17] |
WOODARD D W, CODY G D. Anomalous resistivity of Nb3Sn [J]. Modern Language Review, 1964, 136(1): 166–168.
|
[18] |
QIAO L, YANG L, ZHENG X J. A simple phenomenological model for characterizing the coupled effect of strain states and temperature on the normal-state electrical resistivity in Nb3Sn superconductors [J]. Journal of Applied Physics, 2013, 114(3): 1–7.
|
[19] |
WEBB G, FISK Z, ENGELHARDT J, et al. Apparent T2 dependence of normal-state resistivities and lattice heat-capacities of high-T superconductors [J]. Bulletin of the American Physical Society, 1976, 21(11): 1285.
|
[20] |
GURVITCH M, GHOSH A K, LUTZ H, et al. Low-temperature resistivity of ordered and disordered A15 compounds [J]. Physical Review B, 1980, 22(1): 128–136. doi: 10.1103/PhysRevB.22.128
|
[21] |
ZHANG Y, ASHCRAFT R, MENDELEV M I, et al. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy [J]. The Journal of Chemical Physics, 2016, 145(20): 204505. doi: 10.1063/1.4968212
|
[22] |
KO W S, KIM D H, KWON Y J, et al. Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential [J]. Metals-Basel, 2018, 8(11): 900. doi: 10.3390/met8110900
|
[23] |
CHUDINOV V G, GOGOLIN V P, GOSHCHITSKII B N, et al. Simulation of collision cascades in intermetallic Nb3Sn compounds [J]. Physica Status Solidi C, 1981, 67(1): 61–67. doi: 10.1002/pssa.2210670103
|
[24] |
PAPADIMITRIOU I, UTTON C, TSAKIROPOULOS P. Ab initio investigation of the intermetallics in the Nb-Sn binary system [J]. Acta Materialia, 2015, 86: 23–33. doi: 10.1016/j.actamat.2014.12.017
|
[25] |
SUNDARESWARI M, RAMASUBRAMANIAN S, RAJAGOPALAN M. Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds-first principles DFT study [J]. Solid State Communications, 2010, 150(41/42): 2057–2060.
|
[26] |
ZHANG R, GAO P F, WANG X Z, et al. First-principles study on elastic and superconducting properties of Nb3Sn and NbAl under hydrostatic pressure [J]. AIP Advances, 2015, 5(10): 1–9.
|
[27] |
WIESMANN H, GURVITCH M, LUTZ H, et al. Simple model for characterizing the electrical resistivity in A-15 superconductors [J]. Physical Review Letters, 1977, 38(14): 782–785. doi: 10.1103/PhysRevLett.38.782
|
[28] |
YANG L, DING H, ZHANG X, et al. A multiple-field coupled resistive transition model for superconducting Nb3Sn [J]. AIP Advances, 2016, 6(12): 125101. doi: 10.1063/1.4971214
|
[29] |
CATON R, VISWANATHAN R. Analysis of the normal-state resistivity for the neutron-irradiated A15 superconductors vanadium silicide (V3Si), niobium-platinum (Nb3Pt), and niobium aluminide (Nb3Al) [J]. Physical Review B: Condens Matter, 1982, 25(1): 179–193. doi: 10.1103/PhysRevB.25.179
|
[30] |
RAMAKRISHNAN S, NIGAM A K, CHANDRA G. Resistivity and magnetoresistance studies on superconducting A15 V3Ga, V3Au, and V3Pt compounds [J]. Physical Review B: Condens Matter, 1986, 34(9): 6166–6171. doi: 10.1103/PhysRevB.34.6166
|
[31] |
QIAO L, ZHANG X, DING H, et al. An intrinsic model for strain tensor effects on the density of states in A15 Nb3Sn [J]. Cryogenics, 2019, 97: 50–54. doi: 10.1016/j.cryogenics.2018.11.002
|
[32] |
KIM D H, GRAY K E, KAMPWIRTH R T, et al. Possible origins of resistive tails and critical currents in high-temperature superconductors in a magnetic field [J]. Physical Review B: Condens Matter, 1990, 42(10): 6249–6258. doi: 10.1103/PhysRevB.42.6249
|
[33] |
GODEKE A, JEWELL M C, GOLUBOV A A, et al. Inconsistencies between extrapolated and actual critical fields in Nb3Sn wires as demonstrated by direct measurements of Hc2, H* and Tc [J]. Superconductor Science & Technology, 2003, 16(9): 1019–1025.
|
[34] |
何宇新, 乔力, 石震天, 等. 静水压作用下Nb3Sn多晶体超导临界温度退化的耦合模型 [J]. 固体力学学报, 2020, 41(4): 334–342.
HE Y X, QIAO L, SHI Z T, et al. A coupling model for hydrostatic pressure-induced critical temperature degradation of Nb3Sn polycrystalline superconductors [J]. Acta Mechanica Solida Sinica, 2020, 41(4): 334–342.
|
[35] |
TINKHAM M. Resistive transition of high-temperature superconductors [J]. Physical Review Letters, 1988, 61(14): 1658–1661. doi: 10.1103/PhysRevLett.61.1658
|
[36] |
CHU C, TESTARDI L. Hydrostatic-pressure enhanced lattice transformation and hydrostatic-pressure suppressed superconducting transition in Nb3Sn single-crystal [J]. Bulletin of the American Physical Society, 1974, 19(3): 228.
|