
Citation: | SHI Zhentian, YANG Xujia, WANG Haoyang, QIAO Li. Superconducting Transition of Nb3Sn Single Crystal under High-Pressure[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 021102. doi: 10.11858/gywlxb.20200615 |
光滑粒子流体动力学(Smoothed Particle Hydrodynamics, SPH)方法中的搜索算法较耗时,即每个时间步都要对领域粒子进行搜索,粒子越多,耗时情况越突出,与有限元法相比,SPH方法的计算效率要低得多。为了解决SPH方法计算效率低的问题,Johnson等[1-2]和Attaway等[3]将有限元与SPH方法相结合,提出了SPH-FEM耦合的算法,即:在小变形区域使用有限元法,大变形区域仍使用SPH方法。该方法不仅提高了计算效率,而且适应性较强。
目前,采用SPH方法对爆炸焊接进行数值模拟的相关报道较少,而且多采用二维SPH方法。Tanaka[4]采用SPH方法对爆炸焊接的斜碰撞过程进行了数值模拟,成功地模拟出射流、波形和涡旋,波长的模拟结果相对实验结果偏大。李晓杰等[5]采用SPH方法及热塑性流体力学模型对爆炸复合板的斜碰撞过程中出现的界面波进行了数值模拟,模拟结果与张登霞等[6-7]实验结果的一致性较好。刘江等[8]利用AUTODYN软件中的SPH方法模拟了爆炸复合的斜碰撞,结合模拟中有效塑性变形、温度及剪切应力呈现的变化规律发现,爆炸复合的结合机理集塑性变形、熔化和扩散为一体。本研究将采用三维SPH方法对双面爆炸焊接过程进行模拟,将其结果与实验及理论结果进行对比,分析SPH-FEM耦合方法对爆炸焊接模拟的有效性。
以前期45钢/Q235钢双面爆炸焊接实验[9]为基础,考虑到计算效率,利用LS-DYNA建立如图 1及图 2所示的两组双面爆炸焊接SPH-FEM耦合的三维真实计算模型,选用的炸药为乳化炸药(玻璃微球的质量分数为5%),计算模型中基板和复板的材料、尺寸、间隙(δ)及药厚如表 1所示。起爆方式为点起爆。
Calculationmodel | Flyer plate | Base plate | Gap δ/mm |
Size of explosive/(mm×mm×mm) | |||
Material | Size/(mm×mm×mm) | Material | Size/(mm×mm×mm) | ||||
Ⅰ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×10 | |
Ⅱ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×5 |
基、复板采用3D Solid 164实体单元,单元边长为0.1 cm;炸药划分为光滑粒子,粒子的大小Δr取为0.1 cm。考虑到模型的对称性,为了提高计算效率,采用1/2模型进行计算。单位制为cm-g-μs。
数值计算中乳化炸药采用高能燃烧模型[10-11]及JWL状态方程[12]。JWL状态方程表达式为
p=AJWL(1−ωR1v)e−R1v+BJWL(1−ωR2v)e−R2v+ωE0v |
(1) |
式中:AJWL、BJWL、R1、R2和ω为材料参数;p为爆轰产物压力,GPa;E0为初始比内能,kJ/cm3;v为爆轰气体产物的相对比容,为无量纲量。炸药的相关参数见表 2,其中:ρ为密度,D为炸药爆速。
数值计算中,基、复板均采用Mie-Grüneisen状态方程[14]和Johnson-Cook材料模型[15]。Johnson-Cook材料模型的形式如下
σ=(A+Bεnp)(1+Cln˙ε∗p)(1−T∗m) |
(2) |
式中:εp为有效塑性应变;˙ε∗p=˙εp/˙ε0p为有效塑性应变率,其中˙ε0p为参考应变率;A、B、C、m及n为与材料相关的常数;无量纲温度T*表示为T*=(T-Tr)/(Tm-Tr),其中Tr为室温, Tm为熔点。45钢选用与Q235钢相同的Johnson-Cook材料模型参数,具体参数如表 3所示。
图 3所示是爆炸焊接结束时复板的竖向位移云图。由图 3可看出,复板的位移大致均为6 mm,表明基、复板已完全复合。为了更直观地观察复板单元位移的变化情况,在复板上选择3个特征单元(431 806、437 359、444 788),输出其位移-时间曲线,如图 4所示。由图 4可看出,特征单元的竖向位移均略大于间隙(6 mm),这是由于在爆炸载荷作用下复板有一定程度的减薄率所致。
图 5所示是一对分别取自基板与复板结合界面处的特征单元(基板单元:798 751;复板单元:416 251),特征单元的选取与前期实验[9]中金相试样的取样位置一致。
图 6所示是这对特征单元的速度-时间曲线。可以看出,基板在碰撞前有一个正的速度峰;该现象的产生如文献[17]所述,是由于爆轰产物不断堆积以及前碰撞点在待复合区产生的振动能所致。复板上所取单元的最大碰撞速度为897 m/s。
图 7所示是在复板结合界面处所选取的3个特征单元(410 476、416 251、420 976)。图 8所示是这3个特征单元的速度-时间曲线。
由图 8可以看出,随着距起爆端距离的增加,复板的碰撞速度增大。由文献[17]的结论可知,该现象是由于基板与复板的碰撞在金属板的待复合区产生了强烈振动引起的。
图 9所示是在结合界面处选取的3个特征单元(415 576、418 051、419 776),单元415 576取在复板中心处,与前期实验[7]中取样做金相观察的位置一致。图 10所示是3个特征单元的压力历程。
由图 10可以看出,随着距起爆端距离的增加,复板的碰撞压力增大。由文献[17]的结论可知,该现象是爆轰产物不断堆积以及前碰撞点在金属板待复合区振动能不断增加的共同作用结果。
图 11所示是爆炸焊接结束时复板的竖向位移云图。由图 11可看出,复板的位移大致均为6 mm,表明基、复板已完全复合。为了更加直观地观察复板单元位移的变化情况,在复板上选择3个特征单元(432 182、438 034、443 960),输出其位移-时间曲线,如图 12所示。由图 12可看出,特征单元的竖向位移均略大于6 mm,但较10 mm药厚下的竖向位移小。这是由于5 mm药厚下的爆炸载荷作用比10 mm药厚下小,导致5 mm药厚下的复板减薄率比10 mm药厚下低。
图 13所示是一对分别取自基板与复板结合界面处的特征单元(基板单元:799 201;复板单元:416 701),特征单元的选取与前期实验[9]中金相试样的取样位置一致。
图 14所示是这对特征单元的速度-时间曲线, 可以看出,基板在碰撞前也有一个正的速度峰。复板上所取单元的最大碰撞速度为565 m/s。
图 15所示是在复板结合界面处所选取的3个特征单元(411 976、417 001、423 826)。图 16所示是这3个特征单元的速度-时间曲线。由图 16可以看出,随着距起爆端距离的增加,复板的碰撞速度增大。
图 17所示是在结合界面处选取的3个特征单元(416 326、418 801、422 776),单元416 326取在复板中心处,与前期实验[7]中取样做金相观察的位置一致。图 18所示是这3个特征单元的压力历程。由图 18可以看出,随着距起爆端距离的增加,复板的碰撞压力增大。
由图 6可以看出,10 mm药厚下复板的最大碰撞速度为897 m/s。由图 14可以看出,5 mm药厚下复板的最大碰撞速度为565 m/s。利用前期工作[18]中提到的3种理论公式(Gurney公式、Aziz公式、Deribas公式)计算了复板的碰撞速度,如表 4、表 5所示,并与数值模拟结果进行了比较。由表 4和表 5可以看出:Gurney公式和Aziz公式的计算结果均存在较大的偏差;而由Deribas公式计算的两组结果与数值模拟结果较接近,误差均未超过5%,且与前期实验结果较吻合,证明了SPH-FEM耦合算法的可靠性。
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.75 | 1 089 | 897 | -21.0 |
Aziz | 0.75 | 711 | 897 | 20.0 |
Deribas | 0.75 | 853 | 897 | 4.9 |
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.45 | 863 | 565 | -52.7 |
Aziz | 0.45 | 480 | 565 | 15.0 |
Deribas | 0.45 | 576 | 565 | -1.9 |
由图 10可以看出,10 mm药厚下复板单元415 576处的碰撞压力为17.08 GPa。由图 18可以看出,5 mm药厚下复板单元416 326处的碰撞压力为11.25 GPa。
Ezra等提出的碰撞压力的计算公式为[16]
p=ρ1vs,1vp1+ρ1vs,1ρ2vs, 2 |
(3) |
式中:vs, 1、vs, 2分别表示复板、基板的声速,m·s-1;ρ1、ρ2分别表示复板、基板的密度,g·cm-3;vp表示复板的碰撞速度,m·s-1。
结合表 4和表 5中3种理论公式计算得到的碰撞速度,通过(3)式可得到复板的碰撞压力,表 6及表 7为其理论计算值与数值模拟结果的比较。可见:Gurney公式和Aziz公式的计算结果均存在较大的偏差;而由Deribas公式计算的两组结果与数值模拟结果较接近,误差均未超过5%,说明Deribas公式和SPH-FEM耦合方法对双面爆炸焊接具有较好的指导意义。
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 22.08 | 17.08 | -29.3 |
Aziz | 14.42 | 17.08 | 15.6 |
Deribas | 17.30 | 17.08 | -1.3 |
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 17.50 | 11.25 | -55.6 |
Aziz | 9.73 | 11.25 | 13.5 |
Deribas | 11.68 | 11.25 | -3.8 |
利用LS-DYNA软件和SPH-FEM耦合方法对前期双面爆炸焊接实验进行了三维数值模拟,并将模拟结果与实验及理论计算结果进行了对比,得到如下结论。
(1) 10 mm药厚和5 mm药厚下复板位移均略大于间隙值6 mm,这是由于爆轰载荷作用下复板有一定的减薄率所致。
(2) 10 mm药厚下,复板中部的最大碰撞速度为897 m/s,碰撞压力为17.08 GPa;5 mm药厚下,复板中部的最大碰撞速度为565 m/s,碰撞压力为11.25 GPa。通过与3种理论公式(Gurney公式、Aziz公式、Deribas公式)计算得到的碰撞速度进行比较发现,数值模拟结果与Deribas公式的计算结果较接近,误差较小,且与实验结果较吻合,证明了SPH-FEM耦合方法用于双面爆炸复合模拟的有效性,同时Deribas公式和SPH-FEM耦合方法对双面爆炸复合具有较好的指导意义。
(3) 10 mm药厚和5 mm药厚下复板的碰撞速度及碰撞压力均随着距起爆端距离的增加而增大,该现象是由于爆轰产物的不断堆积和前碰撞点在金属板待复合区振动能的不断增加共同作用的结果。
[1] |
梁明, 张平祥, 卢亚锋, 等. 磁体用Nb3Sn超导体研究进展 [J]. 材料导报, 2006, 20(12): 1–4.
LIANG M, ZHANG P Y, LU Y F, et al. Advances in Nb3Sn superconductor for magnet application [J]. Materials Review, 2006, 20(12): 1–4.
|
[2] |
周又和, 王省哲. ITER超导磁体设计与制备中的若干关键力学问题 [J]. 中国科学(物理学·力学·天文学), 2013, 43(15): 1558–1569.
ZHOU Y H, WANG X Z. Review on some key issues related to design and fabrication of superconducting magnets in ITER [J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2013, 43(15): 1558–1569.
|
[3] |
许少峰, 刘旭峰, 宋云涛. Nb3Sn超导磁体低温冷却设计 [J]. 原子能科学技术, 2013, 43(15): 147–150.
XU S F, LIU X F, SONG Y T. Cryogenic cooling design of Nb3Sn superconducting magnet [J]. Atomic Energy Science and Technology, 2013, 43(15): 147–150.
|
[4] |
王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社, 2008.
WANG Q L. High-field superconducting magnets science [M]. Beijing: Science Press, 2008.
|
[5] |
唐先德, 李春广, 武玉, 等. 核聚变用内Sn法Nb3Sn股线的制备与性能 [J]. 低温物理学报, 2005, 27(A2): 936–931.
TANG X D, LI C G, WU Y, et al. The manufacture and properties of the Nb3Sn strand for ITER by the internal tin process [J]. Chinese Journal of Low Temperature Physics, 2005, 27(A2): 936–931.
|
[6] |
蒋华伟. 应变对Nb3Sn股线临界特性退化影响 [J]. 稀有金属材料与工程, 2015, 44(6): 1423–1426.
JIANG H W. Effect of strain on critical properties degradation of Nb3Sn strand [J]. Rare Metal Materials and Engineering, 2015, 44(6): 1423–1426.
|
[7] |
LIU B, WU Y, LIU F, et al. Axial strain characterization of the Nb3Sn strand used for China's TF conductor [J]. Fusion Engineering & Design, 2011, 86(1): 1–4.
|
[8] |
TAYLOR J D M, HAMPSHIRE D P, et al. The scaling law for the strain dependence of the critical current density in Nb3Sn superconducting wires [J]. Superconductor Science and Technology, 2006, 18(12): 241–252.
|
[9] |
SUMMERS L T, GUINAN M W, MILLER J R, et al. A model for the prediction of Niobium-Tin (Nb3Sn) critical current as a function of field, temperature, strain, and radiation damage [J]. IEEE Transactions on Magnetics, 1991, 27(2/3): 2041–2044.
|
[10] |
HAKEN T, BERNARD, GODEKE A, et al. The influence of compressive and tensile axial strain on the critical properties of Nb3Sn conductors [J]. IEEE Transactions on Applied Superconductivity, 1995, 5(5): 1909–1912.
|
[11] |
EKIN J W. Unified scaling law for flux pinning in practical superconductors: I. separability postulate, raw scaling data and parameterization at moderate strains [J]. Superconductor Science & Technology, 2010, 23(8): 083001.
|
[12] |
EKIN J W. Strain-scaling law for flux pinning in practical superconductors. part 1: basic relationship and application to niobium-tin (Nb3Sn) conductors [J]. Cryogenics, 1980, 20(11): 611–624. doi: 10.1016/0011-2275(80)90191-5
|
[13] |
CHU C W. Pressure-enhanced lattice transformation in Nb3Sn single crystal [J]. Physical Review Letters, 1974, 33(21): 1283–1286. doi: 10.1103/PhysRevLett.33.1283
|
[14] |
TANAKA S, HANDOKO, MIYAKE A, et al. Superconducting and martensitic transitions of V3Si and Nb3Sn under high pressure [J]. Journal of the Physical Society of Japan, 2012: 81.
|
[15] |
LIM K C, THOMPSON J D, WEBB G W. Electronic density of states and Tc in niobium-tin (Nb3Sn) under pressure [J]. Physical Review B: Condens Matter, 1983, 27(5): 2781–2787. doi: 10.1103/PhysRevB.27.2781
|
[16] |
REN Z, GAMPERLE L, FETE A, et al. Evolution of T2 resistivity and superconductivity in Nb3Sn under pressure [J]. Physical Review B, 2017, 95(18): 184503. doi: 10.1103/PhysRevB.95.184503
|
[17] |
WOODARD D W, CODY G D. Anomalous resistivity of Nb3Sn [J]. Modern Language Review, 1964, 136(1): 166–168.
|
[18] |
QIAO L, YANG L, ZHENG X J. A simple phenomenological model for characterizing the coupled effect of strain states and temperature on the normal-state electrical resistivity in Nb3Sn superconductors [J]. Journal of Applied Physics, 2013, 114(3): 1–7.
|
[19] |
WEBB G, FISK Z, ENGELHARDT J, et al. Apparent T2 dependence of normal-state resistivities and lattice heat-capacities of high-T superconductors [J]. Bulletin of the American Physical Society, 1976, 21(11): 1285.
|
[20] |
GURVITCH M, GHOSH A K, LUTZ H, et al. Low-temperature resistivity of ordered and disordered A15 compounds [J]. Physical Review B, 1980, 22(1): 128–136. doi: 10.1103/PhysRevB.22.128
|
[21] |
ZHANG Y, ASHCRAFT R, MENDELEV M I, et al. Experimental and molecular dynamics simulation study of structure of liquid and amorphous Ni62Nb38 alloy [J]. The Journal of Chemical Physics, 2016, 145(20): 204505. doi: 10.1063/1.4968212
|
[22] |
KO W S, KIM D H, KWON Y J, et al. Atomistic simulations of pure tin based on a new modified embedded-atom method interatomic potential [J]. Metals-Basel, 2018, 8(11): 900. doi: 10.3390/met8110900
|
[23] |
CHUDINOV V G, GOGOLIN V P, GOSHCHITSKII B N, et al. Simulation of collision cascades in intermetallic Nb3Sn compounds [J]. Physica Status Solidi C, 1981, 67(1): 61–67. doi: 10.1002/pssa.2210670103
|
[24] |
PAPADIMITRIOU I, UTTON C, TSAKIROPOULOS P. Ab initio investigation of the intermetallics in the Nb-Sn binary system [J]. Acta Materialia, 2015, 86: 23–33. doi: 10.1016/j.actamat.2014.12.017
|
[25] |
SUNDARESWARI M, RAMASUBRAMANIAN S, RAJAGOPALAN M. Elastic and thermodynamical properties of A15 Nb3X (X = Al, Ga, In, Sn and Sb) compounds-first principles DFT study [J]. Solid State Communications, 2010, 150(41/42): 2057–2060.
|
[26] |
ZHANG R, GAO P F, WANG X Z, et al. First-principles study on elastic and superconducting properties of Nb3Sn and NbAl under hydrostatic pressure [J]. AIP Advances, 2015, 5(10): 1–9.
|
[27] |
WIESMANN H, GURVITCH M, LUTZ H, et al. Simple model for characterizing the electrical resistivity in A-15 superconductors [J]. Physical Review Letters, 1977, 38(14): 782–785. doi: 10.1103/PhysRevLett.38.782
|
[28] |
YANG L, DING H, ZHANG X, et al. A multiple-field coupled resistive transition model for superconducting Nb3Sn [J]. AIP Advances, 2016, 6(12): 125101. doi: 10.1063/1.4971214
|
[29] |
CATON R, VISWANATHAN R. Analysis of the normal-state resistivity for the neutron-irradiated A15 superconductors vanadium silicide (V3Si), niobium-platinum (Nb3Pt), and niobium aluminide (Nb3Al) [J]. Physical Review B: Condens Matter, 1982, 25(1): 179–193. doi: 10.1103/PhysRevB.25.179
|
[30] |
RAMAKRISHNAN S, NIGAM A K, CHANDRA G. Resistivity and magnetoresistance studies on superconducting A15 V3Ga, V3Au, and V3Pt compounds [J]. Physical Review B: Condens Matter, 1986, 34(9): 6166–6171. doi: 10.1103/PhysRevB.34.6166
|
[31] |
QIAO L, ZHANG X, DING H, et al. An intrinsic model for strain tensor effects on the density of states in A15 Nb3Sn [J]. Cryogenics, 2019, 97: 50–54. doi: 10.1016/j.cryogenics.2018.11.002
|
[32] |
KIM D H, GRAY K E, KAMPWIRTH R T, et al. Possible origins of resistive tails and critical currents in high-temperature superconductors in a magnetic field [J]. Physical Review B: Condens Matter, 1990, 42(10): 6249–6258. doi: 10.1103/PhysRevB.42.6249
|
[33] |
GODEKE A, JEWELL M C, GOLUBOV A A, et al. Inconsistencies between extrapolated and actual critical fields in Nb3Sn wires as demonstrated by direct measurements of Hc2, H* and Tc [J]. Superconductor Science & Technology, 2003, 16(9): 1019–1025.
|
[34] |
何宇新, 乔力, 石震天, 等. 静水压作用下Nb3Sn多晶体超导临界温度退化的耦合模型 [J]. 固体力学学报, 2020, 41(4): 334–342.
HE Y X, QIAO L, SHI Z T, et al. A coupling model for hydrostatic pressure-induced critical temperature degradation of Nb3Sn polycrystalline superconductors [J]. Acta Mechanica Solida Sinica, 2020, 41(4): 334–342.
|
[35] |
TINKHAM M. Resistive transition of high-temperature superconductors [J]. Physical Review Letters, 1988, 61(14): 1658–1661. doi: 10.1103/PhysRevLett.61.1658
|
[36] |
CHU C, TESTARDI L. Hydrostatic-pressure enhanced lattice transformation and hydrostatic-pressure suppressed superconducting transition in Nb3Sn single-crystal [J]. Bulletin of the American Physical Society, 1974, 19(3): 228.
|
[1] | WANG Xiao-Wei, DONG Lian-Ke, LONG Qi-Wei. The Computer Simulation of Fractal Dimension-Ality with Perimeter-Area Relation[J]. Chinese Journal of High Pressure Physics, 1991, 5(2): 124-129 . doi: 10.11858/gywlxb.1991.02.007 |
[2] | SU Fang, CHE Rong-Zheng, XU Wei, YAN Fei-Na. Measurement and Analysis of Strain and Calibration of Pressure in Piston-Cylinder Type Apparatus with 4.5 GPa Hydrostatic Pressure[J]. Chinese Journal of High Pressure Physics, 1990, 4(1): 63-71 . doi: 10.11858/gywlxb.1990.01.010 |
[3] | PENG Jian, ZHAO Yi-Jun, ZHANG Zheng-Wen, YUAN Jian-Min. Calculation for the Thermal Stress Damage in the Thin Plate of Al Irradiated by CW Laser Beam[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 130-136 . doi: 10.11858/gywlxb.1990.02.009 |
[4] | YUAN Yong-Hua, LIU Chang-Ling, HAN Li-Shi, GUI Yuan-Zhen, LI Qi-Min. Measurement of the Vaporization Pressure on Aluminum Target Irradiated by Laser Beam[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 114-117 . doi: 10.11858/gywlxb.1990.02.006 |
[5] | ZHOU Zhi-Kui, CHEN Qiu-Hua. Numerical Simulation of the Performance of Electromagnetic Railguns[J]. Chinese Journal of High Pressure Physics, 1989, 3(4): 308-314 . doi: 10.11858/gywlxb.1989.04.008 |
[6] | DONG Yu-Bin, SU Lin-Xiang, CHEN Da-Nian, JING Fu-Qian, HAN Jun-Wan, FENG Jia-Bo. Numerical Simulation on the Spallation of a Steel Cylindrical Shell Imploded under Slipping Detonation[J]. Chinese Journal of High Pressure Physics, 1989, 3(1): 1-10 . doi: 10.11858/gywlxb.1989.01.001 |
[7] | WANG Yi-Feng, SU Wen-Hui, QIAN Zheng-Nan, MA Xian-Feng, YAN Xue-Wei. A Study on the High Temperature-High Pressure Stability and the X-Ray Phase Analysis for Compounds R2Fe4/3W2/3O7 with Pyrochlore Structure[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 296-304 . doi: 10.11858/gywlxb.1988.04.002 |
[8] | SHEN Zhu-Tong, DAI Shou-Yu, CHEN Li-Quan, CHI Yong-Qian. Some Investigations on the High Pressure Synthesis of Niobium Trisulfide and XPS Analysis[J]. Chinese Journal of High Pressure Physics, 1988, 2(1): 10-16 . doi: 10.11858/gywlxb.1988.01.002 |
[9] | DONG Yu-Bin, ZAHNG Wan-Jia, JING Fu-Qian, HAN Jun-Wan, CHEN Da-Nian, SU Lin-Xiang, FENG Jia-Bo. Numerical Analysis for Dynamic Damage Processes and LY-12 Aluminum Spallations[J]. Chinese Journal of High Pressure Physics, 1988, 2(4): 305-312 . doi: 10.11858/gywlxb.1988.04.003 |
[10] | CHEN Dong-Quan, XIE Guo-Qiang. Molecular Dynamics Simulation of Polymorphous Transitions[J]. Chinese Journal of High Pressure Physics, 1987, 1(1): 50-57 . doi: 10.11858/gywlxb.1987.01.007 |
Calculationmodel | Flyer plate | Base plate | Gap δ/mm |
Size of explosive/(mm×mm×mm) | |||
Material | Size/(mm×mm×mm) | Material | Size/(mm×mm×mm) | ||||
Ⅰ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×10 | |
Ⅱ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×5 |
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.75 | 1 089 | 897 | -21.0 |
Aziz | 0.75 | 711 | 897 | 20.0 |
Deribas | 0.75 | 853 | 897 | 4.9 |
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.45 | 863 | 565 | -52.7 |
Aziz | 0.45 | 480 | 565 | 15.0 |
Deribas | 0.45 | 576 | 565 | -1.9 |
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 22.08 | 17.08 | -29.3 |
Aziz | 14.42 | 17.08 | 15.6 |
Deribas | 17.30 | 17.08 | -1.3 |
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 17.50 | 11.25 | -55.6 |
Aziz | 9.73 | 11.25 | 13.5 |
Deribas | 11.68 | 11.25 | -3.8 |
Calculationmodel | Flyer plate | Base plate | Gap δ/mm |
Size of explosive/(mm×mm×mm) | |||
Material | Size/(mm×mm×mm) | Material | Size/(mm×mm×mm) | ||||
Ⅰ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×10 | |
Ⅱ | 45 steel | 300×150×2 | Q235 | 300×150×16 | 6 | 300×150×5 |
ρ/(g·cm-3) | D/(m·s-1) | AJWL/GPa | BJWL/GPa | R1 | R2 | ω | E0/(kJ·cm-3) |
1.12 | 4 510 | 326.42 | 5.808 9 | 5.80 | 1.56 | 0.57 | 3.323 |
ρ/(g·cm-3) | G/GPa | A/GPa | B/GPa | C | n | m | Tm/K | Tr/K |
7.83 | 77 | 0.792 | 0.51 | 0.014 | 0.26 | 1.03 | 1 793 | 294 |
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.75 | 1 089 | 897 | -21.0 |
Aziz | 0.75 | 711 | 897 | 20.0 |
Deribas | 0.75 | 853 | 897 | 4.9 |
Theoreticalformula | Massfraction | Collision velocity/(m·s-1) | Error/% | |
Theoretical calculation[18] | Simulation | |||
Gurney | 0.45 | 863 | 565 | -52.7 |
Aziz | 0.45 | 480 | 565 | 15.0 |
Deribas | 0.45 | 576 | 565 | -1.9 |
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 22.08 | 17.08 | -29.3 |
Aziz | 14.42 | 17.08 | 15.6 |
Deribas | 17.30 | 17.08 | -1.3 |
Theoreticalformula | Collision pressure/GPa | Error/% | |
Calculation | Simulation | ||
Gurney | 17.50 | 11.25 | -55.6 |
Aziz | 9.73 | 11.25 | 13.5 |
Deribas | 11.68 | 11.25 | -3.8 |