Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610
Citation: YAO Yongyong, SU Buyun, XIAO Gesheng, XU Haitao, SHU Xuefeng. In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024201. doi: 10.11858/gywlxb.20200610

In-Plane Biaxial Impact Response of Re-Entrant Auxetic Honeycomb

doi: 10.11858/gywlxb.20200610
  • Received Date: 02 Sep 2020
  • Rev Recd Date: 27 Sep 2020
  • Issue Publish Date: 25 Aug 2021
  • The in-plane biaxial impact response of a re-entrant auxetic honeycomb structure is studied by finite element simulation. A re-entrant auxetic honeycomb structure with different regularities is established by using the node perturbation method, and its deformation modes, stress-strain curves and energy dissipation capacity under different impact velocities are compared with the regular honeycomb structure. The results show that the impact velocity is the most important factor affecting the deformation mode of the honeycomb structure. In addition, due to the influence of irregularity, the plateau stage of stress-strain curve is prolonged and the degree of anisotropy of the structure is inhibited under biaxial impact, resulting that the deformation characteristics of the structure change from local compactness to overall compactness. In terms of energy absorption capacity, the irregularity of the structure leads to the lag of the compaction stage, so its plastic energy dissipation is lower than that of the regular model under the same compression degree.

     

  • loading
  • [1]
    LAKES R. Foam structures with a negative Poisson’s ratio [J]. Science, 1987, 235(4792): 1038–1040. doi: 10.1126/science.235.4792.1038
    [2]
    ALDERSON A, EVANS K E. Microstructural modelling of auxetic microporous polymers [J]. Journal of Materials Science, 1995, 30(13): 3319–3332. doi: 10.1007/BF00349875
    [3]
    MILLER W, SMITH C W, EVANS K E. Honeycomb cores with enhanced buckling strength [J]. Composite Structures, 2011, 93(3): 1072–1077. doi: 10.1016/j.compstruct.2010.09.021
    [4]
    LAKES R. Deformation mechanisms in negative Poisson’s ratio materials: structural aspects [J]. Journal of Materials Science, 1991, 26(9): 2287–2292. doi: 10.1007/BF01130170
    [5]
    任鑫, 张相玉, 谢亿民. 负泊松比材料和结构的研究进展 [J]. 力学学报, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381

    REN X, ZHANG X Y, XIE Y M. Research progress in auxetic materials and structures [J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(3): 656–689. doi: 10.6052/0459-1879-18-381
    [6]
    马芳武, 梁鸿宇, 赵颖, 等. 内凹三角形负泊松比材料的面内冲击动力学性能 [J]. 振动与冲击, 2019, 38(17): 81–87.

    MA F W, LIANG H Y, ZHAO Y, et al. In-plane impact dynamic performance of re-entrant triangle material with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2019, 38(17): 81–87.
    [7]
    ZHANG J J, LU G X, RUAN D, et al. Tensile behavior of an auxetic structure: analytical modeling and finite element analysis [J]. International Journal of Mechanical Science, 2018, 136: 143–154. doi: 10.1016/j.ijmecsci.2017.12.029
    [8]
    LI D, YIN J H, DONG L, et al. Strong re-entrant cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2017, 53(5): 3493–3499.
    [9]
    HOU J H, LI D, DONG L. Mechanical behaviors of hierarchical cellular structures with negative Poisson’s ratio [J]. Journal of Materials Science, 2018, 53(14): 10209–10216. doi: 10.1007/s10853-018-2298-0
    [10]
    邓小林, 刘旺玉. 一种负泊松比正弦曲线蜂窝结构的面内冲击动力学分析 [J]. 振动与冲击, 2017, 36(13): 103–109.

    DENG X L, LIU W Y. In-plane impact dynamic analysis for a sinusoidal curved honeycomb structure with negative Poisson’s ratio [J]. Journal of Vibration and Shock, 2017, 36(13): 103–109.
    [11]
    崔世堂, 王波, 张科. 负泊松比蜂窝面内动态压缩行为与吸能特性研究 [J]. 应用力学学报, 2017, 34(5): 919–924.

    CUI S T, WANG B, ZHANG K. Mechanical behavior and energy absorption of honeycomb with negative Poisson’s ratio under in-plane dynamic compression [J]. Chinese Journal of Applied Mechanics, 2017, 34(5): 919–924.
    [12]
    陈鹏, 侯秀慧, 张凯. 面内冲击荷载下半凹角蜂窝的抗冲击特性 [J]. 高压物理学报, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759

    CHEN P, HOU X H, ZHANG K. Impact resistance of semi re-entrant honeycombs under in-plane dynamic crushing [J]. Chinese Journal of High Pressure Physics, 2019, 33(6): 064104. doi: 10.11858/gywlxb.20190759
    [13]
    HU L L, ZHOU M Z, DENG H. Dynamic crushing response of auxetic honeycombs under large deformation: theoretical analysis and numerical simulation [J]. Thin Walled Structures, 2018, 131: 373–384.
    [14]
    ZHANG X C, DING H M, AN L Q, et al. Numerical investigation on dynamic crushing behavior of auxetic honeycombs with various cell-wall angles [J]. Advances in Mechanical Engineering, 2015, 7(2): 679678. doi: 10.1155/2014/679678
    [15]
    LI Z, WANG T, JIANG Y, et al. Design-oriented crushing analysis of hexagonal honeycomb core under in-plane compression [J]. Composite Structures, 2017, 187: 429–438.
    [16]
    LI Z, GAO Q, YANG S, et al. Comparative study of the in-plane uniaxial and biaxial crushing of hexagonal, re-entrant, and mixed honeycombs [J]. Journal of Sandwich Structures and Materials, 2019, 21(6): 1991–2013. doi: 10.1177/1099636218755294
    [17]
    AJDARI A, NAYEB-HASHEMI H, VAZIRI A. Dynamic crushing and energy absorption of regular, irregular and functionally graded cellular structures [J]. International Journal of Solids & Structures, 2011, 48(3/4): 506–516.
    [18]
    ALKHADER M, VURAL M. Mechanical response of cellular solids: role of cellular topology and microstructural irregularity [J]. International Journal of Engineering Science, 2008, 46(10): 1035–1051. doi: 10.1016/j.ijengsci.2008.03.012
    [19]
    LIU W, WANG N, LUO T, et al. In-plane dynamic crushing of re-entrant auxetic cellular structure [J]. Materials & Design, 2016, 100: 84–91.
    [20]
    ZHENG Z, YU J, LI J. Dynamic crushing of 2D cellular structures: a finite element study [J]. International Journal of Impact Engineering, 2005, 32(1/4): 650–664.
    [21]
    ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of 2D Voronoi honeycombs [J]. Journal of the Mechanics & Physics of Solids, 2001, 49(4): 857–870.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)

    Article Metrics

    Article views(4259) PDF downloads(39) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return