
Citation: | MIAO Chunhe, CHEN Lina, SHAN Junfang, WANG Pengfei, XU Songlin. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609 |
纯贫铀可与钼、钛、钒、锆、铌等多种金属相结合、改性,制成各种合金材料。大多数贫铀合金材料均具有高密度、高硬度、高强度、高延性、高韧性等特征,从力学参数方面来看,贫铀合金是一种较钨合金更理想的穿甲弹体材料[1]。更重要的是,贫铀合金的着火点很低,500 ℃时就能在空气中着火并剧烈地燃烧,在2000 ℃时能持续燃烧。当贫铀合金制成的穿甲弹穿透装甲车辆等硬目标后,贫铀合金会碎成粉末并与空气接触后剧烈燃烧,杀伤内部乘员,破坏内部设备。因此,贫铀材料在穿甲方面具有明显优势。同样,在破甲领域也可以充分发挥贫铀合金材料的优势。由于贫铀合金的高密度和高延性特征,是继铜、钨、钼和钽等破甲药型罩材料之后,另一种较理想的材料。经科学设计后,贫铀合金药型罩能成型为理想的射流,具有更强的侵彻能力。当贫铀合金药型罩形成的射流侵入装甲目标后,更能充分发挥贫铀材料的纵火性能,贯穿后的射流将变成剧烈燃烧的高速颗粒群,具有明显的毁伤后效[2-5]。
基于贫铀-铌合金药型罩,开展了聚能破甲后效实验,分析了该材料药型罩形成的射流在破甲后的纵火能力,研究了破甲后的侵彻体在密闭靶箱内造成的温度和压力响应的特性。
实验用聚能弹体主要由壳体、主药柱、传爆药柱和药型罩等组成,其结构如图 1所示。其中,主药柱为8701炸药(94.5RDX/3DNT/2PVAe/0.5SA,密度1.7 g/cm3),质量为28.6 g。药型罩为铀铌合金材料,采取顶部开口的锥形结构,高27.2 mm,口部外沿直径30.9 mm,顶部开口外径8 mm,外锥角49.2°。为了便于对比,同时也开展了相同结构的紫铜材料药型罩弹体破甲后纵火效应实验。
聚能破甲后效实验包括两种类型,一种是考核纵火能力的破甲后纵火效应实验,另一种是观察密闭空间内温度压力响应的破甲后温度压力测试实验。
弹体垂直向下布置,炸高为50 mm,采用相同高度的支撑钢筒实现。靶板为直径45 mm、高85 mm的45钢棒。弹、靶对接后采用方框结构的支架支撑。为便于射流贯穿钢棒后直接通过并作用于后效物,支架上顶板中心设置一个直径为35 mm的圆形开孔,开孔中心与弹靶轴线对齐。为了考核贫铀合金射流的纵火效果,支架下底板上预置了棉布、线缆等效应物。实验布局如图 2所示。在距爆心10 m附近的掩体内架设高速相机,对弹体静爆过程进行拍摄。
靶板为直径45 mm、高96 mm的45钢棒。采用与纵火效应实验相同的弹体,弹体紧贴钢棒水平放置,炸高为50 mm。钢棒下方设置一个厚20 mm的垫板,垫板上预制了一个直径为35 mm的孔,便于穿透钢棒的射流后效物直接通过进入后效靶箱。后效靶箱为一个钢质的密闭靶箱,采用厚度为5 mm的45钢板焊接而成,外形尺寸为2.5 m×1.8 m×1.4 m。实验布局如图 3所示。
为了定性获得贫铀合金射流穿透钢棒后在靶箱内的效应,同时为测试系统搭建提供依据,在正式测试实验之前开展了一发摸底实验。实验时,将靶箱的一个侧面打开并引爆聚能弹体,通过高速相机对整个过程进行拍摄,以记录和观察贫铀合金射流的整个作用过程特性。
测试实验中,通过在靶箱不同的位置布置压力传感器和温度传感器,实现3路压力测试和3路温度测试,建立了密闭靶箱内温度和压力测量系统。该测量系统由热电偶、压力传感器、电偶放大器、电荷放大器以及示波器等组成,如图 4所示。其中,p1、p2、p3分别代表 3个压力传感器的位置,T1、T2、T3分别代表 3个温度传感器的位置。以聚能弹与靶箱接触点作为坐标系原点,各个测点的位置分别为:p1, T1(700, 700, 0);p2, T2(1250, 700, 900);p3, T3(2500, 500, 0)。传感器通过绝缘胶木座固定在舱壁上,敏感面与舱体内壁面平齐。测量系统调试完毕后,在正式实验前,采用敲击和火烤的方式,对系统的触发以及系统可靠性进行调试。实验过程中,采用自触发方式进行触发。
图 5为紫铜材料和贫铀合金材料药型罩纵火效应实验高速录像。从高速录像上可以清楚地看出,与紫铜药型罩相比,贫铀材料药型罩形成的射流在穿透靶板后,向前急速喷出,形成了一个高温、高速且具有一定发散能力的颗粒束。由于贫铀的着火点很低,500 ℃时就能在空气中着火并剧烈地燃烧,该颗粒束保持燃烧状态并作用于后效物,将后效物有效点燃。而紫铜材料药型罩射流仅能形成一个相对集中的颗粒束,不具备引燃能力。
而且,在贫铀射流侵彻钢棒的过程中,当射流作用于钢棒时,贫铀合金颗粒剧烈燃烧,在钢棒周围形成较多燃烧颗粒向外高速飞散。燃烧颗粒的飞散范围宽度不小于2850 mm(超出了高速相机的视场范围)。而紫铜材料没有这种现象,可见的燃烧颗粒覆盖范围宽度为1230 mm,属于常规爆炸的正常现象。
起爆后2.5 ms时刻,采用贫铀合金药型罩的聚能弹作用于密闭靶箱的高速录像如图 6所示。在靶箱内部,与图 5中贫铀合金药型罩的现象类似,贫铀材料药型罩形成的射流在穿透钢棒后,从靶箱入口高速喷出一个燃烧颗粒束,经与靶箱底板碰撞后,高速飞行且剧烈燃烧的贫铀合金颗粒几乎能充满整个靶箱。对于靶箱外部,在贫铀射流侵彻钢棒的过程中,也形成了一个由燃烧颗粒组成的高速发散的火球。
实验获得的3路压力信号如图 7所示。从测试结果上可以看出,各测点并没有明显的压力信号。因为正常的压力信号有一个先上升、后下降的过程,而该信号中看不出这个过程。而且,由于3个测点位于不同距离处,压力信号的变化应有不同的起跳时间,但测得的3路信号变化趋势以及起跳基本时间一致。从图 7可以看出,信号中夹杂了较为复杂的高频成分。与高速录像的结果结合进行分析可知,贫铀合金射流产生的高速颗粒在靶箱内部空间燃烧以及与金属靶箱发生碰撞,产生了一定的电磁干扰,这是测量信号中夹杂了很多高频分量的主要原因。压力测试结果表明,贫铀合金射流穿透钢棒后,仅有少量的射流和钢棒碎粒进入靶箱,爆轰产物被完全隔离在靶箱外部,靶箱内部无明显压力变化。
实验获得的3路温度信号如图 8所示。实验过程中,环境温度约为17.8 ℃,T1在0.1 s处产生了约4 ℃的温升,T2在1.5 s时开始产生温升,稳定温升约为3 ℃。由于更接近于射流直接作用的状态,T3在0.2 s内产生了约15 ℃的温升。经过约5 s后,各个测点的温度趋于一致,箱体内温度达到平衡态20.3 ℃。本次实验温度数据记录时间较长(共17 s),到5 s后,温度已经基本无明显变化。从温度测量的结果来看,对于正对射流侵彻中轴线上方的测点(T3),由于有射流直接作用在其附近,所以有较高且较快的温升。而另外两个测点的温升则是由于射流穿过后,贫铀颗粒燃烧造成的靶箱内部温升,是个稳态的效果。
贫铀合金颗粒的高速碰撞和燃烧,在测量空间内产生了较强的电磁干扰,这与常规金属材料药型罩的现象不同,具体原因和定量的分析,需进一步实验验证。
通过贫铀合金药型罩破甲后效实验,可以得出如下结论:
(1) 贫铀合金药型罩形成的射流在穿透钢棒后,能形成一个高温、高速且具有一定发散能力的燃烧颗粒束,相对于紫铜射流,具有更强的纵火能力;
(2) 贫铀射流作用于目标的过程中,在目标外围,也能形成一个由高速发散的燃烧颗粒组成的火球,燃烧颗粒覆盖范围明显大于常规爆炸范围;
(3) 贫铀合金药型罩形成的射流在穿透装甲目标后,目标内部压力无明显变化,正对射流方向位置在0.2 s内产生了约15 ℃的温升,最终靶箱整体温度升高2.5 ℃。
研究结果可以为聚能战斗部设计提供参考。
[1] |
徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06
XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06
|
[2] |
徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008
XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008
|
[3] |
XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. doi: 10.1016/j.mechmat.2019.103220
|
[4] |
FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4
|
[5] |
CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2
|
[6] |
CHEN X W, LI J C. Analysis on the resistive force in penetration of a rigid projectile [J]. Defence Technology, 2014, 10(3): 285–293. doi: 10.1016/j.dt.2014.06.007
|
[7] |
沈河涛. 弹丸侵彻混凝土介质效应的研究[D]. 北京: 北京理工大学, 1996.
SHEN H T. Study on the effect of projectile penetrating concrete medium [D]. Beijing: Beijing Institute of Technology, 1996.
|
[8] |
BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
|
[9] |
薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010
XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010
|
[10] |
蒋志刚, 甄明, 刘飞, 等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001
JIANG Z G, ZHEN M, LIU F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001
|
[11] |
朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991
ZHU X, LU X Z, DU Y F, et al. Experimental study on impact resistance of reinforced conceret columns strengthened with steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991
|
[12] |
甄明, 蒋志刚, 万帆, 等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020
ZHEN M, JIANG Z G, WAN F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defense Technology, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020
|
[13] |
蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003
MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003
|
[14] |
徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034
XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034
|
[15] |
陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005
CHEN L N, SHAN J F, ZHOU L J, et al. Effects of stress state on penetration performance of cement mortar [J]. Journal of Vibration and Shock, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005
|
[16] |
MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556 [R]. Orlando: Army Research Laboratory, 2011.
|
[17] |
JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
|
[18] |
Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Army Corps of Engineers, 1946.
|
[19] |
National Defense Research Committee. Effects of impact and explosion: summery technical report of division 2 [R]. Washington DC: National Defense Research Committee, 1946.
|
[20] |
KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. doi: 10.1016/0029-5493(76)90015-7
|
[21] |
BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
|
[22] |
YOUNG C W. Penetration equations: SAND 97-2426 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1997.
|
[23] |
REID S R, WEN H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles: UMIST Report ME/AM/02.01/TE/G/018507/Z [R]. Manchester: University of Manchester Institute of Science and Technology, 2001.
|
[24] |
LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4
|
[25] |
FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2
|
[26] |
王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014
WANG L, WANG F C, WANG L, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014
|
[27] |
张磊, 任新见, 孔德锋. 钢筋混凝土HJC模型的研究和改进[C]//第四届全国工程安全与防护学术会议. 洛阳, 2014: 134−138.
ZHANG L, REN X J, KONG D F. Research and improvement of HJC model of steel reinforced concrete [C]//Proceedings of the 4th National Conference of Engineering Safety and Protection. Luoyang, 2014: 134−138.
|
[1] | XU Tiancheng, DENG Yuanhao, HONG Chen, HUANG Haijun, XU Feng. Pressure Distribution Investigation in Silicon Oil Compressed in Diamond Anvil Cell[J]. Chinese Journal of High Pressure Physics, 2025, 39(3): 031101. doi: 10.11858/gywlxb.20240860 |
[2] | WU Di, LI Nana, LIU Bingyan, GUAN Jiayi, LI Mingtao, YAN Limin, WANG Bihan, DONG Hongliang, MAO Yuhong, YANG Wenge. Laser-Induced Phase Separation of Mixed-Halide CsPb(IxBr1−x)3 Perovskite Nanocrystals under High Pressure[J]. Chinese Journal of High Pressure Physics, 2024, 38(5): 050107. doi: 10.11858/gywlxb.20230822 |
[3] | SUN Hao, YE Pengda, LIU Yuwei, JIN Meiling, LI Xiang. High-Pressure Synthesis of Copper-Based Rare-Earth Perovskite La1–xNdxCuO3 (0≤x≤1)[J]. Chinese Journal of High Pressure Physics, 2024, 38(1): 010104. doi: 10.11858/gywlxb.20230784 |
[4] | CHEN Guwen, XU Liang, ZHU Shengcai. Phase Transition Mechanism of Graphite to Nano-Polycrystalline Diamond Resolved by Molecular Dynamics Simulation[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 041101. doi: 10.11858/gywlxb.20230663 |
[5] | ZHOU Xubiao, LI Shangsheng, LI Hongtao, SU Taichao, YANG Manman, DU Jingyang, HU Meihua, HU Qiang. Synthesis and Thermoelectric Properties of Sn1− |
[6] | WANG Bihan, LIN Chuanlong, LIU Xuqiang, YANG Wenge. Phase Transition Kinetics of Ge from dc Phase to β-Sn Phase under High Pressure[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 021101. doi: 10.11858/gywlxb.20210893 |
[7] | LIU Chao, YING Pan. Mechanism of Pressure and Carbon Content Regulating Physical Properties of BCxO Compounds[J]. Chinese Journal of High Pressure Physics, 2021, 35(6): 061101. doi: 10.11858/gywlxb.20210792 |
[8] | ZHANG Luming, MA Shengguo, LI Zhiqiang, XIN Hao. Mechanical Properties of AlxCoCrFeNi High-Entropy Alloy: A Molecular Dynamics Study[J]. Chinese Journal of High Pressure Physics, 2021, 35(5): 052201. doi: 10.11858/gywlxb.20210730 |
[9] | GU Xiaofei, FAN Siqi, LI Rujiang, LI Hongzhen. α→β Phase Transition Characteristics of High-Energy and Low-Sensitivity Explosive FOX-7[J]. Chinese Journal of High Pressure Physics, 2021, 35(3): 031301. doi: 10.11858/gywlxb.20200653 |
[10] | GAO Mingyue, ZHOU Qiang. p- |
[11] | LIU Shenggang, JING Qiumin, TAO Tianjiong, MA Heli, WANG Xiang, WENG Jidong, LI Zeren. In Situ Measurement of the Cupping Deformation of Diamond Anvil under High Pressures[J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023201. doi: 10.11858/gywlxb.20170548 |
[12] | ZHANG Ya-Jie, HE Duan-Wei, FANG Lei-Ming, LI Xin, LIU Fang-Ming, HU Qi-Wei, CHEN Ji, DING Wei, WANG Yong-Hua. In-Situ High-Pressure Neutron Diffraction with Supported PCBN Anvils[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 735-741. doi: 10.11858/gywlxb.2017.06.008 |
[13] | LIU Ke-Wei, YU Jie, ZHOU Xiao-Long, HU Ming-Yu, ZHAN Jian-Xiang. Rutile and CaCl2 Structure of SnO2 Phase Transition under High-Pressure Studied by First-Principles Method[J]. Chinese Journal of High Pressure Physics, 2017, 31(1): 81-88. doi: 10.11858/gywlxb.2017.01.012 |
[14] | YANG Long, WANG Gang-Hua, KAN Ming-Xian, LI Ping. A Numerical Simulation Analysis of Mono-Temperature and Tri-Temperature Models by MDSC Program in Z-Pinch Implosion[J]. Chinese Journal of High Pressure Physics, 2016, 30(1): 64-70. doi: 10.11858/gywlxb.2016.01.010 |
[15] | ZHU Xiang, WANG Yong-Qiang, WANG Zheng, CHENG Xue-Rui, YUAN Chao-Sheng, CHEN Zhen-Ping, SU Lei. Pressure-Induced Phase Transition of [Emim][PF6] and [Bmim][PF6] Studied by Raman Scattering[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 253-260. doi: 10.11858/gywlxb.2013.02.013 |
[16] | ZHANG Guang-Qiang, XU Yue, SUN Jing-Shu, XU Da-Peng, WANG De-Yong, ZHANG Lin, XUE Yan-Feng, SONG Geng-Xin, LIU Xiao-Mei, SU Wen-Hui. p-T Phase Diagram of Coesite Synthesized from Nanometer SiO2 Powder[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 9-16 . doi: 10.11858/gywlxb.2009.01.002 |
[17] | LIU Shu-E, XU Da-Peng, LIU Xiao-Mei, SU Wen-Hui, XUE Yan-Feng, SUN Jing-Shu. Modelling Synthesis in Laboratory of Coesite in the Earth's Crust and Its Formation Mechanism[J]. Chinese Journal of High Pressure Physics, 2006, 20(2): 163-171 . doi: 10.11858/gywlxb.2006.02.009 |
[18] | LUO Xiang-Jie, LUO Bo-Cheng, LIU Qiang, DING Li-Ye. Study on the Effect of the Phase Transition of Pyrophyllite on the Resistance of the Heating Graphite Tube in High Pressure Reaction Cell[J]. Chinese Journal of High Pressure Physics, 1997, 11(1): 70-74 . doi: 10.11858/gywlxb.1997.01.013 |
[19] | ZHOU Jian-Shi. The Phase Transition of La2CuO4+ Synthesized in High Oxygen Pressure[J]. Chinese Journal of High Pressure Physics, 1992, 6(3): 169-174 . doi: 10.11858/gywlxb.1992.03.002 |
[20] | LIU Zhen-Xian, CUI Qi-Liang, ZHAO Yong-Nian, ZOU Guang-Tian. Influence of Pressure-Transmitting Media on the Lattice Vibration and Phase Transition Pressure-High Pressure Raman Spectra Studies of -Bi2O3[J]. Chinese Journal of High Pressure Physics, 1990, 4(2): 81-86 . doi: 10.11858/gywlxb.1990.02.001 |