Volume 35 Issue 2
Mar 2021
Turn off MathJax
Article Contents
MIAO Chunhe, CHEN Lina, SHAN Junfang, WANG Pengfei, XU Songlin. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609
Citation: MIAO Chunhe, CHEN Lina, SHAN Junfang, WANG Pengfei, XU Songlin. Research on the Ballistic Performance of Cement Mortar[J]. Chinese Journal of High Pressure Physics, 2021, 35(2): 024205. doi: 10.11858/gywlxb.20200609

Research on the Ballistic Performance of Cement Mortar

doi: 10.11858/gywlxb.20200609
  • Received Date: 01 Sep 2020
  • Rev Recd Date: 23 Sep 2020
  • Issue Publish Date: 25 Mar 2021
  • The stress state of the target was seldom taken into account in the investigation of the ballistic performance of cement mortar. Based on the self-developed penetration experimental system of concrete under true-triaxial confinement and the experimental results of the anti-bullet performance of cement mortar, the depth and resistance of opening pit under different stress states were discussed in the present paper. The empirical formula of penetration depth and finite element method (FEM) based on HJC model were used to analyze the penetration behaviors of cement mortar results. The results showed that under the lower velocity impact, the UMIST formula and the HJC model were both effective in the prediction of pit depth. At the same time, the stress state had an obvious influence on pit depth. With the increase of the lateral limit, the cement mortar strength increases and the pit depth of the projectile decreases. The acceleration wave in bullet and the wave in the y-axis support rod were calculated by FEM based on HJC model. The results showed that the process of projectile opening pit would be recorded by these two waveforms, and the wave structure in the y-axis support rod would be more significantly. Although the tendency of the simulation results was basically consistent with the experimental waves, there was difference in the stress amplitude to some degree, which also indicated that the calculation method of the pit opening resistance based on HJC model needed to be improved.

     

  • loading
  • [1]
    徐松林, 王鹏飞, 赵坚, 等. 基于三维Hopkinson杆的混凝土动态力学性能研究 [J]. 爆炸与冲击, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06

    XU S L, WANG P F, ZHAO J, et al. Dynamic behavior of concrete under static triaxial loading using 3D-Hopkinson bar [J]. Explosion and Shock Waves, 2017, 37(2): 180–185. doi: 10.11883/1001-1455(2017)02-0180-06
    [2]
    徐松林, 王鹏飞, 单俊芳, 等. 真三轴静载作用下混凝土的动态力学性能研究 [J]. 振动与冲击, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008

    XU S L, WANG P F, SHAN J F, et al. Dynamic behavior of concrete under static tri-axial loadings [J]. Journal of Vibration and Shock, 2018, 37(15): 59–67. doi: 10.13465/j.cnki.jvs.2018.15.008
    [3]
    XU S L, SHAN J F, ZHANG L, et al. Dynamic compression behaviors of concrete under true triaxial confinement: an experimental technique [J]. Mechanics of Materials, 2020, 140: 103220. doi: 10.1016/j.mechmat.2019.103220
    [4]
    FORRESTAL M J, ALTMAN B S, CARGILE J D, et al. An empirical equation for penetration depth of ogive-nose projectiles into concrete targets [J]. International Journal of Impact Engineering, 1994, 15(4): 395–405. doi: 10.1016/0734-743X(94)80024-4
    [5]
    CHEN X W, LI Q M. Deep penetration of a non-deformable projectile with different geometrical characteristics [J]. International Journal of Impact Engineering, 2002, 27(6): 619–637. doi: 10.1016/S0734-743X(02)00005-2
    [6]
    CHEN X W, LI J C. Analysis on the resistive force in penetration of a rigid projectile [J]. Defence Technology, 2014, 10(3): 285–293. doi: 10.1016/j.dt.2014.06.007
    [7]
    沈河涛. 弹丸侵彻混凝土介质效应的研究[D]. 北京: 北京理工大学, 1996.

    SHEN H T. Study on the effect of projectile penetrating concrete medium [D]. Beijing: Beijing Institute of Technology, 1996.
    [8]
    BACKMAN M E, GOLDSMITH W. The mechanics of penetration of projectiles into targets [J]. International Journal of Engineering Science, 1978, 16(1): 1–99. doi: 10.1016/0020-7225(78)90002-2
    [9]
    薛建锋, 沈培辉, 王晓鸣. 弹体侵彻混凝土开坑阶段阻力的计算 [J]. 高压物理学报, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010

    XUE J F, SHEN P H, WANG X M. Resistance during cratering for projectile penetrating into concrete target [J]. Chinese Journal of High Pressure Physics, 2016, 30(6): 499–504. doi: 10.11858/gywlxb.2016.06.010
    [10]
    蒋志刚, 甄明, 刘飞, 等. 钢管约束混凝土抗侵彻机理的数值模拟 [J]. 振动与冲击, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001

    JIANG Z G, ZHEN M, LIU F, et al. Simulation of anti-penetration mechanism of steel tube confined concrete [J]. Journal of Vibration and Shock, 2015, 34(11): 1–6. doi: 10.13465/j.cnki.jvs.2015.11.001
    [11]
    朱翔, 陆新征, 杜永峰, 等. 外包钢管加固RC柱抗冲击试验研究 [J]. 工程力学, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991

    ZHU X, LU X Z, DU Y F, et al. Experimental study on impact resistance of reinforced conceret columns strengthened with steel jackets [J]. Engineering Mechanics, 2016, 33(6): 23–33. doi: 10.6052/j.issn.1000-4750.2014.11.0991
    [12]
    甄明, 蒋志刚, 万帆, 等. 钢管约束混凝土抗侵彻性能试验 [J]. 国防科技大学学报, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020

    ZHEN M, JIANG Z G, WAN F, et al. Steeltube confined concrete targets penetration experiments [J]. Journal of National University of Defense Technology, 2015, 37(3): 121–127. doi: 10.11887/j.cn.201503020
    [13]
    蒙朝美, 宋殿义, 蒋志刚, 等. 多边形钢管约束混凝土靶抗侵彻性能试验研究 [J]. 振动与冲击, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003

    MENG C M, SONG D Y, JIANG Z G, et al. Tests for anti-penetration performance of polygonal steel tube-confined concrete targets [J]. Journal of Vibration and Shock, 2018, 37(13): 14–19. doi: 10.13465/j.cnki.jvs.2018.13.003
    [14]
    徐松林, 单俊芳, 王鹏飞, 等. 三轴应力状态下混凝土的侵彻性能研究 [J]. 爆炸与冲击, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034

    XU S L, SHAN J F, WANG P F, et al. Penetration performance of concrete under triaxial stress [J]. Explosion and Shock Waves, 2019, 39(7): 071101. doi: 10.11883/bzycj-2019-0034
    [15]
    陈丽娜, 单俊芳, 周李姜, 等. 应力状态对水泥砂浆侵彻性能的影响 [J]. 振动与冲击, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005

    CHEN L N, SHAN J F, ZHOU L J, et al. Effects of stress state on penetration performance of cement mortar [J]. Journal of Vibration and Shock, 2020, 39(15): 32–40. doi: 10.13465/j.cnki.jvs.2020.15.005
    [16]
    MEYER C S. Development of geomaterial parameters for numerical simulations using the Holmquist-Johnson-Cook constitutive model for concrete: ARL-TR-5556 [R]. Orlando: Army Research Laboratory, 2011.
    [17]
    JOHNSON G R, COOK W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures [J]. Engineering Fracture Mechanics, 1985, 21(1): 31–48. doi: 10.1016/0013-7944(85)90052-9
    [18]
    Army Corps of Engineers. Fundamentals of protective design: AT1207821 [R]. Army Corps of Engineers, 1946.
    [19]
    National Defense Research Committee. Effects of impact and explosion: summery technical report of division 2 [R]. Washington DC: National Defense Research Committee, 1946.
    [20]
    KENNEDY R P. A review of procedures for the analysis and design of concrete structures to resist missile impact effects [J]. Nuclear Engineering and Design, 1976, 37(2): 183–203. doi: 10.1016/0029-5493(76)90015-7
    [21]
    BARR P. Guidelines for the design and assessment of concrete structures subjected to impact [R]. London, UK: UK Atomic Energy Authority, Safety and Reliability Directorate, 1990.
    [22]
    YOUNG C W. Penetration equations: SAND 97-2426 [R]. Albuquerque, NM, US: Sandia National Laboratories, 1997.
    [23]
    REID S R, WEN H M. Predicting penetration, cone cracking, scabbing and perforation of reinforced concrete targets struck by flat-faced projectiles: UMIST Report ME/AM/02.01/TE/G/018507/Z [R]. Manchester: University of Manchester Institute of Science and Technology, 2001.
    [24]
    LI Q M, CHEN X W. Dimensionless formulae for penetration depth of concrete target impacted by a non-deformable projectile [J]. International Journal of Impact Engineering, 2003, 28(1): 93–116. doi: 10.1016/S0734-743X(02)00037-4
    [25]
    FORRESTAL M J, FREW D J, HICKERSON J P, et al. Penetration of concrete targets with deceleration-time measurements [J]. International Journal of Impact Engineering, 2003, 28(5): 479–497. doi: 10.1016/S0734-743X(02)00108-2
    [26]
    王琳, 王富耻, 王鲁, 等. 空心弹体垂直侵彻混凝土靶板的应变测试研究 [J]. 北京理工大学学报, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014

    WANG L, WANG F C, WANG L, et al. Strain measurement in hollow projectiles impacting concrete targets [J]. Journal of Beijing Institute of Technology, 2002, 22(4): 453–456. doi: 10.3969/j.issn.1001-0645.2002.04.014
    [27]
    张磊, 任新见, 孔德锋. 钢筋混凝土HJC模型的研究和改进[C]//第四届全国工程安全与防护学术会议. 洛阳, 2014: 134−138.

    ZHANG L, REN X J, KONG D F. Research and improvement of HJC model of steel reinforced concrete [C]//Proceedings of the 4th National Conference of Engineering Safety and Protection. Luoyang, 2014: 134−138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(10)  / Tables(3)

    Article Metrics

    Article views(4424) PDF downloads(33) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return