Citation: | LIU Junming, ZHANG Xu, ZHAO Kang, QIN Shuang, PEI Hongbo, ZHANG Rong. Using PVDF Gauge to Study Grüneisen Parameter of Unreacted JB-9014 Insensitive Explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051301. doi: 10.11858/gywlxb.20180524 |
[1] |
MURNAGHAN F D.Finite deformations of an elastic solid[J].American Journal of Mathematics, 1937, 59(2):235-260. doi: 10.2307/2371405
|
[2] |
BIRCH F.Finite elastic strain of cubic crystals[J].Physical Review, 1947, 71(11):809-824. doi: 10.1103/PhysRev.71.809
|
[3] |
VINET P, FERRANTE J, SMITH J R, et al.An universal equation of state for solids[J].Journal of Physics C:Solid State Physics, 1986, 19(20):467-473. doi: 10.1088/0022-3719/19/20/001
|
[4] |
经福谦.实验物态方程导引[M].2版.北京:科学出版社, 1999.
|
[5] |
李维新.一维不定常流与冲击波[M].北京:国防工业出版社, 2003:36-43, 212-213.
|
[6] |
王延飞. JOB-9003炸药未反应状态方程研究[D]. 绵阳: 中国工程物理研究院, 2016: 6-7. http://cdmd.cnki.com.cn/Article/CDMD-82818-1017004354.htm
|
[7] |
BOEHLER R.Melting temperature, adiabats, and Grüneisen parameter of lithium, sodium and potassium versus pressure[J].Physical Review B, 1983, 27(11):6754-6762. doi: 10.1103/PhysRevB.27.6754
|
[8] |
王继海.多项式形式Mie-Grüneisen物态方程及其等熵线[J].爆炸与冲击, 1992, 12(1):1-9.
WANG J H.Polynomial form of Mie-Grüneisen equation of state and its isentropes[J].Explosion and Shock Waves, 1992, 12(1):1-9.
|
[9] |
张婷, 毕延, 赵敏光.静高压加载下LY12铝的超声测量与等温状态方程[J].高压物理学报, 2005, 19(1):35-40. doi: 10.11858/gywlxb.2005.01.007
ZHANG T, BI Y, ZHAO M G.Ultrasonic measurement and isothermal equation of state for LY12Al under static pressures[J].Chinese Journal of High Pressure Physics, 2005, 19(1):35-40. doi: 10.11858/gywlxb.2005.01.007
|
[10] |
DUGDALE J S, MACDONALD D K C.The thermal expansion of solids[J].Physical Review, 1953, 89(4):832-834. doi: 10.1103/PhysRev.89.832
|
[11] |
吴强. 金属材料高压物态方程及Grüneisen[D]. 绵阳: 中国工程物理研究院, 2004.
|
[12] |
NAGAYAMA K.Cold potential energy function for solids based on the theoretical models for Grüneisen parameter[J].Journal of Physics and Chemistry of Solids, 1997, 58(2):271-279. doi: 10.1016/S0022-3697(96)00118-7
|
[13] |
KRIVTSOV A M, KUZ'KIN V A.Derivation of equations of state for ideal crystals of simple structure[J].Mechanics of Solids, 2011, 46(3):387-399. doi: 10.3103/S002565441103006X
|
[14] |
STACEY F D, DAVIS P M.High pressure equations of state with applications to the lower mantle and core[J].Physics of the Earth and Planetary Interiors, 2004, 142(3/4):137-184. http://www.sciencedirect.com/science/article/pii/S0031920104001049
|
[15] |
PENG X, XING L, FANG Z.Comparing research on the pressure or volume dependence of Grüneisen parameter[J].Physica B:Condensed Matter, 2007, 394(1):111-114. doi: 10.1016/j.physb.2007.02.022
|
[16] |
崔守鑫, 蔡灵仓, 胡海泉, 等.氯化钠晶体在高温高压下热物理参数的分子动力学计算[J].物理学报, 2005, 54(6):2826-2831. doi: 10.7498/aps.54.2826
CUI S X, CAI L C, HU H Q, et al.Molecular dynamics simulation for thermophysical parameters of sodium chloride solids at high temperature and high pressure[J].Acta Physica Sinica, 2005, 54(6):2826-2831. doi: 10.7498/aps.54.2826
|
[17] |
COHEN R E, GULSEREN O.Thermal equation of state of tantalum[J].Physical Review B, 2001, 63(22):224101. doi: 10.1103/PhysRevB.63.224101
|
[18] |
WINTER R E, WHITEMAN G, HAINING G S, et al.Measurement of equation of state of silicone elastomer[J].AIP Conference Proceedings, 2004, 706(1):679-684. doi: 10.1063/1.1780330
|
[19] |
DICK J J, FOREST C A, RAMSAY J B, et al.The Hugoniot and shock sensitivity of a plastic-bonded TATB explosive PBX 9502[J].Journal of Applied Physics, 1988, 63(10):4881-4888. doi: 10.1063/1.340428
|
[20] |
FU H, LI T, TAN D W, et al.Shock Hugoniot relation of unreacted heterogeneous explosives[J].International Journal of Modern Physics B, 2011, 25(21):2905-2913. doi: 10.1142/S0217979211100527
|
[21] |
SHEFFIELD S A, GUSTAVSEN R L, ALCON R R, et al.High pressure Hugoniot and reaction rate measurements in PBX9501[J].AIP Conference Proceedings, 2004, 706(1):1033-1036. https://www.researchgate.net/profile/Joseph_Zaug/publication/252473325_First_Results_of_Reaction_Propagation_Rates_in_HMX_at_High_Pressure/links/54e4ecdb0cf276cec172ab04.pdf
|
[22] |
于川, 池家春, 刘文翰, 等.JB-9001钝感炸药冲击Hugoniot关系测试[J].高压物理学报, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012
YU C, CHI J C, LIU W H, et al.Shock Hugoniot relation of JB-9001 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 1998, 12(1):72-77. doi: 10.11858/gywlxb.1998.01.012
|
[23] |
张旭, 池家春, 冯民贤.JB9014钝感炸药冲击绝热线测量[J].高压物理学报, 2001, 15(4):304-308. doi: 10.11858/gywlxb.2001.04.011
ZHANG X, CHI J C, FENG M X.Hugoniot relation of JB9014 insensitive high explosive[J].Chinese Journal of High Pressure Physics, 2001, 15(4), 304-308. doi: 10.11858/gywlxb.2001.04.011
|
[24] |
MILLETT J C F, BOURNE N K.The shock Hugoniot of a plastic bonded explosive and inert simulants[J].Journal of Physics D:Applied Physics, 2004, 37(18):2613-2617. doi: 10.1088/0022-3727/37/18/018
|
[25] |
MILNE A, LONGBOTTOM A, BOURNE N, et al.On the unreacted Hugoniots of three plastic bonded explosives[J].Propellants, Explosives, Pyrotechnics, 2007, 32(1):68-72. doi: 10.1002/(ISSN)1521-4087
|
[26] |
KAWAI H.The piezoelectricity of poly (vinylidene fluoride)[J].Japanese Journal of Applied Physics, 1969, 8(7):975-976. doi: 10.1143/JJAP.8.975
|
[27] |
谭叶, 俞宇颖, 戴诚达, 等.反向碰撞法测量Bi的低压Hugoniot数据[J].物理学报, 2011, 60(10):106401. doi: 10.7498/aps.60.106401
TAN Y, YU Y Y, DAI C D, et al.Measurement of low-pressure Hugoniot data for bismuth with reverse-impact geometry[J].Acta Physics Sinica, 2011, 60(10):106401. doi: 10.7498/aps.60.106401
|
[28] |
刘俊明, 张旭, 裴红波, 等.JB-9014钝感炸药冲击Hugoniot关系测量[J].高压物理学报, 2018, 32(3):033202. http://www.gywlxb.cn/CN/abstract/abstract2081.shtml
LIU J M, ZHANG X, PEI H B, et al.Measurement of Hugoniot relation for JB-9014 insensitive explosive[J].Chinese Journal of High Pressure Physics, 2018, 32(3):033202. http://www.gywlxb.cn/CN/abstract/abstract2081.shtml
|