Citation: | CHONG Tao, TAN Fuli, WANG Guiji, ZHAO Jianheng, TANG Zhiping. Ⅰ-Ⅱ-Ⅲ Phase Transition of Bismuth under Magnetically Driven Ramp Wave Loading[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 051101. doi: 10.11858/gywlxb.20180511 |
[1] |
BRIDGMAN P W.Polymorphism, principally of the elements, up to 50000 kg/cm2[J].Physical Review, 1935, 48(11):893. doi: 10.1103/PhysRev.48.893
|
[2] |
BRIDGMAN P W.The resistance of 72 elements, alloys and compounds to 100000 kg/cm2[J].Proceedings of the American Academy of Arts and Sciences, 1952, 81(4):165-251. doi: 10.2307/20023677
|
[3] |
BRIDGMAN P W.Compressions and polymorphic transitions of seventeen elements to 100000 kg/cm2[J].Physical Review, 1941, 60(4):351. doi: 10.1103/PhysRev.60.351
|
[4] |
BUNDY F P.Phase diagram of bismuth to 130000 kg/cm2, 500℃[J].Physical Review, 1958, 110(2):314. doi: 10.1103/PhysRev.110.314
|
[5] |
HOMAN C G.Phase diagram of Bi up to 140 kbars[J].Journal of Physics and Chemistry of Solids, 1975, 36(11):1249-1254. doi: 10.1016/0022-3697(75)90199-7
|
[6] |
KOSSOWSKY R.Observations of the Bi Ⅲ-Ⅳ and Bi Ⅳ-Ⅴ transitions by measurements[J].Transactions of the Metallurgical Society of AIME, 1966, 236(12):1746-1748. http://www.cjcu.jlu.edu.cn/EN/volumn/volumn_1262.shtml
|
[7] |
PHILLIPS D, JURA G.The electrical resistance of bismuth from 25 to 90 kbars[J].Transactions of the Metallurgical Society of AIME, 1967, 239(1):120-121.
|
[8] |
MCMAHON M I, DEGTYAREVA O, NELMES R J, et al.Incommensurate modulations of Bi-Ⅲ and Sb-Ⅱ[J].Physical Review B, 2007, 75(18):184114. doi: 10.1103/PhysRevB.75.184114
|
[9] |
MCMAHON M I, DEGTYAREVA O, NELMES R J.Ba-Ⅳ-type incommensurate crystal structure in group-Ⅴ metals[J].Physical Review Letters, 2000, 85(23):4896-4899. doi: 10.1103/PhysRevLett.85.4896
|
[10] |
DEGTYAREVA O, MCMAHON M I, NELMES R J.High-pressure structural studies of group-15 elements[J].High Pressure Research, 2004, 24(3):319-356. doi: 10.1080/08957950412331281057
|
[11] |
DUFF R E, MINSHALL F S.Investigation of a shock-induced transition in bismuth[J].Physical Review, 1957, 108(5):1207. doi: 10.1103/PhysRev.108.1207
|
[12] |
LARSON D B.A shock-induced phase transformation in bismuth[J].Journal of Applied Physics, 1967, 38(4):1541-1546. doi: 10.1063/1.1709720
|
[13] |
ASAY J R.Shock-induced melting in bismuth[J].Journal of Applied Physics, 1974, 45(10):4441-4452. doi: 10.1063/1.1663070
|
[14] |
谭叶. 金属铋的冲击相变与多相物态方程研究[D]. 绵阳: 中国工程物理研究院, 2011. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2907332
|
[15] |
种涛, 王桂吉, 谭福利, 等.磁驱动准等熵压缩下铁的相变[J].中国科学:物理学力学天文学, 2014, 44(6):630-636. https://www.researchgate.net/profile/Guiji_Wang/publication/274232992_Phase_transition_of_iron_under_magnetically_driven_quasi-isentropic_compression/links/556c3c8e08aefcb861d63387.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
CHONG T, WANG G J, TAN F L, et al.Phase transition of iron under magnetically driven quasi-isentropic compression[J].Scientia Sinica:Physica, Mechanica & Astronomica, 2014, 44(6):630-636. https://www.researchgate.net/profile/Guiji_Wang/publication/274232992_Phase_transition_of_iron_under_magnetically_driven_quasi-isentropic_compression/links/556c3c8e08aefcb861d63387.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
|
[16] |
RIGG P A, GREEFF C W, KNUDSON M D, et al.Influence of impurities on the α to ω phase transition in zirconium under dynamic loading conditions[J].Journal of Applied Physics, 2009, 106(12):123532. doi: 10.1063/1.3267325
|
[17] |
BASTEA M, BASTEA S, EMIG J A, et al.Kinetics of propagating phase transformation in compressed bismuth[J].Physical Review B, 2005, 71(18):180101. doi: 10.1103/PhysRevB.71.180101
|
[18] |
SMITH R F, EGGERT J H, SACULLA M D, et al.Ultrafast dynamic compression technique to study the kinetics of phase transformations in bismuth[J].Physical Review Letters, 2008, 101(6):065701. doi: 10.1103/PhysRevLett.101.065701
|
[19] |
HU J, ICHIYANAGI K, DOKI T, et al.Complex structural dynamics of bismuth under laser-driven compression[J].Applied Physics Letters, 2013, 103(16):161904. doi: 10.1063/1.4825276
|
[20] |
NGUYEN J H, ORLIKOWSKI D, STREITZ F H, et al.Specifically prescribed dynamic thermodynamic paths and resolidification experiments[J].AIP Conference Proceedings, 2004, 706(1):1225-1230. https://core.ac.uk/display/71300822
|
[21] |
WANG G J, LUO B Q, ZHANG X P, et al.A 4 MA, 500 ns pulsed power generator CQ-4 for characterization of material behaviors under ramp wave loading[J].Review of Scientific Instruments, 2013, 84(1):015117. doi: 10.1063/1.4788935
|
[22] |
HALL C A, ASAY J R, KNUDSON M D, et al.Experimental configuration for isentropic compression of solids using pulsed magnetic loading[J].Review of Scientific Instruments, 2001, 72(9):3587-3595. doi: 10.1063/1.1394178
|
[23] |
种涛. 磁驱动准等熵压缩下锆的相变特性初步研究及电磁膨胀环模拟[D]. 绵阳: 中国工程物理研究院, 2012. http://cdmd.cnki.com.cn/Article/CDMD-82818-1012499410.htm
|
[24] |
罗斌强, 谭福利, 赵剑衡. 磁驱动准等熵加载实验中加载压力均匀性分析[C]//第九届全国爆炸力学学术会议论文集. 西宁, 2012.
|
[25] |
陶天炯, 翁继东, 王翔.一种双源光外差测速技术[J].光电工程, 2011, 38(10):39-45. doi: 10.3969/j.issn.1003-501X.2011.10.007
TAO T J, WENG J D, WANG X.A dual laser heterodyne velocimetry[J].Opto-Electronic Engineering, 2011, 38(10):39-45. doi: 10.3969/j.issn.1003-501X.2011.10.007
|
[26] |
罗斌强, 张红平, 种涛, 等.磁驱动斜波压缩实验结果的不确定度分析[J].高压物理学报, 2017, 31(3):295-300. doi: 10.11858/gywlxb.2017.03.011
LUO B Q, ZHANG H P, CHONG T, et al.Experimental uncertainty analysis of magnetically driven ramp wave compression[J].Chinese Journal of High Pressure Physics, 2017, 31(3):295-300. doi: 10.11858/gywlxb.2017.03.011
|
[27] |
唐志平.冲击相变[M].北京:科学出版社, 2008.
|
[1] | WANG Mafa, HIGGINS Andrew J, JIAO Dezhi, HUANG Jie, LIU Sen. Preliminary Simulation and Experimental Study on Implosion-Driven Hypervelocity Launching Technology[J]. Chinese Journal of High Pressure Physics, 2020, 34(3): 033301. doi: 10.11858/gywlxb.20190870 |
[2] | CHEN Fang, LI Ping, LIU Kun, BAI Jingsong, LIN Jianyu, JI Lucheng. Interface Compression Technique in PPM[J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052302. doi: 10.11858/gywlxb.20180663 |
[3] | ZHAO Haibo, XIAO Bo, BAI Jinsong, DUAN Shuchao, WANG Ganghua, KAN Mingxian, CHEN Fang. Simulation of Two-Dimensional Multi-Material Compressible Flows Using Lagrangian Methods[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 042303. doi: 10.11858/gywlxb.20170694 |
[4] | DONG Shi, MENG Chuan-Min, XIAO Yuan-Lu, MO Jun-Jie, ZHANG Ming-Jian, WANG Xiang, SHI Shang-Chun. Preliminary Study of Two-Stage Light Gas GunUsing Reactive Gas as Driving Energy[J]. Chinese Journal of High Pressure Physics, 2017, 31(2): 182-186. doi: 10.11858/gywlxb.2017.02.011 |
[5] | WANG Yu, BAI Jing-Song, WANG Xiang, TAN Hua, LI Ping. Computational Design of the Cavity in the Enhanced Hypervelocity Launcher[J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 235-241. doi: 10.11858/gywlxb.2016.03.009 |
[6] | WANG Yu, BAI Jin-Song, WANG Xiang, TAN Hua, LI Ping. Computational Design of Graded Density Impactors for Convergent Hypervelocity Launchers[J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 155-160. doi: 10.11858/gywlxb.2015.02.011 |
[7] | PANG Bao-Jun, ZHANG Kai, LIN Min, LIU Yuan. Characteristic Analysis of Acoustic Emission Signals Caused by Debris Cloud Impact[J]. Chinese Journal of High Pressure Physics, 2014, 28(6): 664-670. doi: 10.11858/gywlxb.2014.06.004 |
[8] | WANG Qing-Song, WANG Xiang, HAO Long, DAI Cheng-Da, BAI Jin-Song, TAN Hua. Progress on Hypervelocity Launcher Techniques Using a Three-Stage Gun[J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 339-345. doi: 10.11858/gywlxb.2014.03.012 |
[9] | ZHAO Hai-Tao, WANG Cheng, NING Jian-Guo. High Resolution Numerical Simulation of Compressible Multi-Medium Flow[J]. Chinese Journal of High Pressure Physics, 2013, 27(2): 261-267. doi: 10.11858/gywlxb.2013.02.014 |
[10] | ZHAO Shi-Cao, SONG Zhen-Fei, JI Guang-Fu, GONG Zi-Zheng, ZHAO Xiao-Ping. A Novel Design of a Hypervelocity Launcher Based on Two-Stage Gas Gun Facilities[J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 557-564. doi: 10.11858/gywlxb.2011.06.012 |
[11] | CHEN Lang, LIU Qun, LU Jian-Ying, GONG Zi-Zheng, GUO Xin-Wei. Numerical Simulation of Hypervelocity Launch of Flier Plate with Gradual Change Impedance[J]. Chinese Journal of High Pressure Physics, 2009, 23(3): 167-172 . doi: 10.11858/gywlxb.2009.03.002 |
[12] | XU Jin-Zhong, TANG Wen- Hui, XU Zhi-Hong. Numerical Analysis of the Characteristics of Debris Clouds Produced by Hypervelocity Impacts Using SPH Method[J]. Chinese Journal of High Pressure Physics, 2008, 22(4): 377-383 . doi: 10.11858/gywlxb.2008.04.007 |
[13] | BAI Jing-Song, SHEN Qiang, TANG Mi, HU Jian-Bo, LUO Guo-Qiang, TAN Hua, ZHANG Lian-Meng. A Numerical Analysis of the Influence of Buffer Material on Tantalum Flier Plate Velocity in the Hypervelocity Launcher[J]. Chinese Journal of High Pressure Physics, 2008, 22(1): 19-24 . doi: 10.11858/gywlxb.2008.01.005 |
[14] | BAI Jing-Song, TANG Mi, HUA Jing-Song, LI Ping, TAN Hua. An Improved of Experimental Hypervelocity Launcher and Simulation[J]. Chinese Journal of High Pressure Physics, 2007, 21(3): 253-258 . doi: 10.11858/gywlxb.2007.03.006 |
[15] | ZHANG Xue-Ying, ZHAO Ning, WANG Chun-Wu. Interface Treatment Method for Multi-Component Fluids Numerical Simulation[J]. Chinese Journal of High Pressure Physics, 2006, 20(3): 249-256 . doi: 10.11858/gywlxb.2006.03.005 |
[16] | WU Yu-Yu, HE Yuan-Hang, LI Jin-Zhu. Application of the Coupling Method in Simulating the Hypervelocity Impact[J]. Chinese Journal of High Pressure Physics, 2005, 19(4): 385-389 . doi: 10.11858/gywlxb.2005.04.019 |
[17] | BAI Jing-Song, LI Ping, CHEN Sen-Hua, LIAO Hai-Dong, YANG Li-Bing, JIANG Yang. Numerical Simulation of the Instability of the Jelly Surfaces under the Imploding Drives[J]. Chinese Journal of High Pressure Physics, 2004, 18(4): 295-301 . doi: 10.11858/gywlxb.2004.04.002 |
[18] | BAI Jing-Song, CHEN Sen-Hua, ZHONG Min. High-Resolution Eulerian Hybird Algorithm for Multi-Component Compressible Materials[J]. Chinese Journal of High Pressure Physics, 2002, 16(3): 204-212 . doi: 10.11858/gywlxb.2002.03.008 |
[19] | LIN Shao-Ming, XU Nan-Xian, CHEN Dong-Quan. Numerical Simulations of Hypervelocity Launchers[J]. Chinese Journal of High Pressure Physics, 2000, 14(2): 139-145 . doi: 10.11858/gywlxb.2000.02.010 |
[20] | WANG Jin-Gui. The Launching Technique of Hypervelocity Projectiles in Two-Stage Light Gas Gun[J]. Chinese Journal of High Pressure Physics, 1992, 6(4): 264-272 . doi: 10.11858/gywlxb.1992.04.004 |