Volume 32 Issue 5
Aug 2018
Turn off MathJax
Article Contents
ZHOU Jiahua, YANG Qiang, HAN Zhijun, LU Guoyun. Dynamic Buckling of Functionally Graded Cylindrical Shells under Axial Loading[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054102. doi: 10.11858/gywlxb.20180502
Citation: ZHOU Jiahua, YANG Qiang, HAN Zhijun, LU Guoyun. Dynamic Buckling of Functionally Graded Cylindrical Shells under Axial Loading[J]. Chinese Journal of High Pressure Physics, 2018, 32(5): 054102. doi: 10.11858/gywlxb.20180502

Dynamic Buckling of Functionally Graded Cylindrical Shells under Axial Loading

doi: 10.11858/gywlxb.20180502
  • Received Date: 08 Jan 2018
  • Rev Recd Date: 22 May 2018
  • Based on the Donnell shell theory and classical shell theory, we established the dynamic buckling governing equation of functionally graded cylindrical shell under axial load using Hamilton principle.According to the expression of the radial displacement based on the circumferential continuity of cylindrical shell, we also obtained the dynamic buckling critical load expression and the buckling solution of functionally graded cylindrical shell under axial loading using the separation variable method.Using MATLAB, we performed the numerical analysis of functionally graded cylindrical shells, and discussed the influence of the diameter-thickness ratio, the gradient index, the number of circumferential mode and axial mode on the critical load of dynamic buckling.The results show that the critical load of cylindrical shells decreases with the increase of the critical length.The constraint conditions have effects on the critical load, and the critical load of the clamped edges is higher than that of the simple support.Moreover, the critical load of cylindrical shells grows as the modal number increases, indicating that the higher the critical load is, the easier the high-stage mode excites.The dynamic buckling modal diagram becomes more complicated as the modal number increases.

     

  • loading
  • [1]
    KOIZUMI M. The concept of FGM//ZHAI P C, JIANG C R, ZHANG Q J, et al. Ceramic Transactions: Functionally Gradient Materials. Westerville, OH: The American Ceramic Society, 1993, 34: 3-10.
    [2]
    LOY C T, LAM K Y, REDDY J N.Vibration of functionally graded cylindrical shells[J].International Journal of Mechanical Sciences, 1999, 41(3):309-324. doi: 10.1016/S0020-7403(98)00054-X
    [3]
    SURESH S, MORTENSEN A.Fundamentals of functionally graded materials[M].The Institute of Materials, 1998:18.
    [4]
    ELLINAS C P, CROLL J G A.Elastic-plastic buckling design of cylindrical shells subject to combined axial compression and pressure loading[J].International Journal of Solids and Structures, 1986, 22(9):1007-1017. doi: 10.1016/0020-7683(86)90033-8
    [5]
    VAZIRI A, ESTEKANCHI H E.Buckling of cracked cylindrical thin shells under combined internal pressure and axial compression[J].Thin-Walled Structures, 2006, 44(2):141-151. doi: 10.1016/j.tws.2006.02.004
    [6]
    LATIFI M, FARHATNIA F, KADKHODAEI M.Buckling analysis of rectangular functionally graded plates under various edge conditions using Fourier series expansion[J].European Journal of Mechanics-A/Solids, 2013, 41(11):16-27. http://linkinghub.elsevier.com/retrieve/pii/S0997753813000107
    [7]
    MANTARI J L, MONGE J C.Buckling, free vibration and bending analysis of functionally graded sandwich plates based on an optimized hyperbolic unified formulation[J].International Journal of Mechanical Sciences, 2016, 119:170-186. doi: 10.1016/j.ijmecsci.2016.10.015
    [8]
    LI S R, BATRA R C.Buckling of axially compressed thin cylindrical shells with functionally graded middle layer[J].Thin-Walled Structures, 2006, 44(10):1039-1047. doi: 10.1016/j.tws.2006.10.006
    [9]
    BENI T Y, MEHRALIAN F, ZEIGHAMPOUR H.The modified couple stress functionally graded cylindrical thin shell formulation[J].Mechanics of Advanced Materials and Structures, 2016, 23(7):791-801. doi: 10.1080/15376494.2015.1029167
    [10]
    KARGARNOVIN M H, HASHEMI M.Buckling analysis of multilayered functionally graded composite cylindrical shells//Applied Mechanics and Materials.Trans Tech Publications, 2012, 108:74-79. http://adsabs.harvard.edu/abs/2011AMM...108...74K
    [11]
    SOFIYEV A, DENIZ A, MECITOGLU Z, et al.Buckling of shear deformable functionally graded orthotropic cylindrical shells under a lateral pressure[J].Acta Physica Polonica A, 2015, 127(4):907-909. doi: 10.12693/APhysPolA.127.907
    [12]
    KHAZAEINEJAD P, NAJAFIZADEH M M, JENABI J, et al.On the buckling of functionally graded cylindrical shells under combined external pressure and axial compression[J].Journal of Pressure Vessel Technology, 2010, 132(6):064501. doi: 10.1115/1.4001659
    [13]
    KHALILI S M R, MALEKZADEH K, DAVAR A.Dynamic response of functionally graded circular cylindrical shells//Advanced Materials Research.Trans Tech Publications, 2008, 47:608-611. http://www.scientific.net/AMR.47-50.608
    [14]
    ALASHTI R A, AHMADI S A.Buckling analysis of functionally graded thick cylindrical shells with variable thickness using DQM[J].Arabian Journal for Science and Engineering, 2014, 39(11):8121-8133. doi: 10.1007/s13369-014-1356-4
    [15]
    沈观林, 胡更开, 刘彬.复合材料力学[M].2版.北京:清华大学出版社, 2013.
    [16]
    孟豪, 韩志军, 路国运.复合材料圆柱壳非轴对称动力屈曲[J].振动与冲击, 2017, 36(11):27-30. http://d.old.wanfangdata.com.cn/Periodical/zdycj201711005

    MENG H, HAN Z J, LU G Y.Non-axisymmetric dynamic buckling of composite cylindrical shells[J].Journal of Vibration and Shock, 2017, 36(11):27-30. http://d.old.wanfangdata.com.cn/Periodical/zdycj201711005
    [17]
    WANG J Q, HAN Z J, LU G Y.Dynamic buckling of elastic cylindrical shells under axial step load[J].Applied Mechanics & Materials, 2015, 751:182-188. http://www.scientific.net/AMM.751.182
    [18]
    韩志军.直杆的撞击屈曲及其应力波效应的实验和理论研究.太原:太原理工大学, 2005.
    [19]
    YU X H, HAN Z J, KANG Z Y, et al. Computer simulation of cylindrical shell penetrated by rigid projectile//Applied Mechanics and Materials. Trans Tech Publications, 2012, 152: 594-598.
    [20]
    李楠, 韩志军, 路国运.基于里兹法研究复合材料层合板的动力屈曲问题[J].振动与冲击, 2016, 35(10):180-184. http://d.old.wanfangdata.com.cn/Periodical/zdycj201610029

    LI N, HAN Z J, LU G Y.Dynamic buckling analysis of laminated composite plates by using Ritz method[J].Journal of Vibration and Shock, 2016, 35(10):180-184. http://d.old.wanfangdata.com.cn/Periodical/zdycj201610029
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(1)

    Article Metrics

    Article views(7267) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return