Citation: | LI Xueyan, LI Zhibin, ZHANG Duo. Constitutive Model of Aluminum Foams Considering Temperature Effect under Quasi-Static Compression[J]. Chinese Journal of High Pressure Physics, 2018, 32(4): 044103. doi: 10.11858/gywlxb.20170642 |
[1] |
刘培生, 李铁藩, 傅超.多孔金属材料的应用[J].功能材料, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.html
LIU P S, LI T F, FU C.Application of porous metal materials[J].Functional Materials, 2001, 32(1):12-15. http://www.cqvip.com/QK/72003x/201607/epub1000000248429.html
|
[2] |
尚朝秋, 王应武.泡沫铝材料研究现状分析[J].云南冶金, 2016, 45(3):10-13. http://www.cqvip.com/QK/90321B/201603/669250357.html
SHANG Z Q, WANG Y W.The research status analysis of aluminum foam material[J].Yunnan Metallurgy, 2016, 45(3):10-13. http://www.cqvip.com/QK/90321B/201603/669250357.html
|
[3] |
CHEN C, LU T J.A phenomenological framework of constitutive modelling for incompressible and compressible elastic-plastic solids[J].International Journal of Solids and Structures, 2000, 37(52):7769-7786. doi: 10.1016/S0020-7683(00)00003-2
|
[4] |
王二恒, 虞吉林, 王飞, 等.泡沫铝材料准静态本构关系的理论和实验研究[J].力学学报, 2004, 36(6):673-679. http://mall.cnki.net/magazine/Article/LXXB200406004.htm
WANG E H, YU J L, WANG F, et al.A theoretical and experimental study on the quasi-static constitutive model of aluminum foams[J].Acta Mechanica Sinica, 2004, 36(6):673-679. http://mall.cnki.net/magazine/Article/LXXB200406004.htm
|
[5] |
WANG Z H, JING L, ZHAO L M.Elasto-plastic constitutive model of aluminum alloy foam subjected to impact loading[J].Transactions of Nonferrous Metals Society of China, 2011, 21(3):449-454. doi: 10.1016/S1003-6326(11)60735-8
|
[6] |
HAKAMADA M, NOMURA T, YAMADA Y, et al.Compressive deformation behavior at elevated temperatures in a closed-cell aluminum foam[J].Materials Transactions, 2005, 46(7):1677-1680. doi: 10.2320/matertrans.46.1677
|
[7] |
ALY M S.Behavior of closed cell aluminum foams upon compressive testing at elevated temperatures:experimental results[J].Materials Letters, 2007, 61(14):3138-3141. http://www.sciencedirect.com/science/article/pii/S0167577X06013206
|
[8] |
CADY C M, Ⅲ G T G, LIU C, et al.Compressive properties of a closed-cell aluminum foam as a function of strain rate and temperature[J].Materials Science and Engineering A, 2001, 525(1):1-6. http://www.sciencedirect.com/science/article/pii/S0921509309007503
|
[9] |
习会峰, 刘逸平, 汤立群, 等.考虑温度效应的泡沫铝静态压缩本构模型[J].哈尔滨工程大学学报, 2013, 34(8):1000-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201308010
XI H F, LIU Y P, TANG L Q, et al.Constitutive model of aluminum foam with temperature effect under the quasi-static compression[J].Journal of Harbin Engineering University, 2013, 34(8):1000-1005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hebgcdxxb201308010
|
[10] |
王鹏飞, 徐松林, 胡时胜.基于温度与应变率相互耦合的泡沫铝本构关系[J].高压物理学报, 2014, 28(1):23-28. doi: 10.11858/gywlxb.2014.01.004
WANG P F, XU S L, HU S S.A constitutive relation of aluminum foam coupled with temperature and strain rate[J].Chinese Journal of High Pressure Physics, 2014, 28(1):23-28. doi: 10.11858/gywlxb.2014.01.004
|
[11] |
LIU Q, SUBHASH G.A phenomenological constitutive model for foams under large deformations[J].Polymer Engineering and Science, 2004, 44(3):463-473. doi: 10.1002/(ISSN)1548-2634
|
[1] | TIAN Xinyu, DENG Qingtian, LI Xinbo, SONG Xueli, WANG Guosheng, WEN Jinpeng. Quasi-Static Compression Stability and Enegy Absorption Performance of Cellular I-Beam[J]. Chinese Journal of High Pressure Physics, 2023, 37(4): 044103. doi: 10.11858/gywlxb.20230657 |
[2] | LI Ping, SUN Chonghui, HUANG Ruiyuan, DUAN Shiwei. The Law of Combined Effect of Rate and Temperature on Compressive Strength of Concrete Materials[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024204. doi: 10.11858/gywlxb.20210825 |
[3] | CHANG Chao, MA Zhen, CHU Jingquan, HOU Jianfeng, ZHANG Weiwei. Research on Compression Deformation of Hollow Lattice Structure Based on Additive Manufacturing[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024101. doi: 10.11858/gywlxb.20210885 |
[4] | WEI Jiawei, SHI Xiaopeng, FENG Zhenyu. Strain Rate Dependent Constitutive Model of Rubber[J]. Chinese Journal of High Pressure Physics, 2022, 36(2): 024205. doi: 10.11858/gywlxb.20210815 |
[5] | YU Wenfeng, LI Jinzhu, YAO Zhiyan, HUANG Fenglei. Mechanical Behaviors and Constitutive Model of Polymide under Quasi-Static and Dynamic Compressive Loading[J]. Chinese Journal of High Pressure Physics, 2022, 36(4): 044101. doi: 10.11858/gywlxb.20210922 |
[6] | LUO Ji’an, LIU Fengmao, LIU Zhixi, MA Leiming, CHEN Yekai, LI Xinwei. Study and Correction of Cyclic Loading-Unloading Constitutive Model of Rock Based on Octahedral Theory[J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 024202. doi: 10.11858/gywlxb.20190797 |
[7] | TANG Ruitao, XU Liuyun, WEN Heming, WANG Zihao. A Macroscopic Dynamic Constitutive Model for Ceramic Materials[J]. Chinese Journal of High Pressure Physics, 2020, 34(4): 044201. doi: 10.11858/gywlxb.20190863 |
[8] | LEI Zhongqi, YAO Xiaohu, LONG Shuchang, CHANG Jianhu, WANG Haibo. Dynamic Compression Characteristics of Polystyrene Foam Materials[J]. Chinese Journal of High Pressure Physics, 2019, 33(2): 024202. doi: 10.11858/gywlxb.20180655 |
[9] | ZHOU Lin, WANG Zihao, WEN Heming. On the Accuracy of the Johnson-Cook Constitutive Model for Metals[J]. Chinese Journal of High Pressure Physics, 2019, 33(4): 042101. doi: 10.11858/gywlxb.20190721 |
[10] | WANG Yonghuan, XU Peng, FAN Zhiqiang, WANG Zhuangzhuang. Mechanical Characteristics and Quasi-Static Compression Deformation Mechanism of Open-Cell Aluminum Foam with Spherical Cells[J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 014201. doi: 10.11858/gywlxb.20180532 |
[11] | LI Xueyan, LI Zhibin, ZHANG Duo. Mechanical Behaviors of Closed-Cell Aluminum Foams under Quasi-Static Compression-Shear Loads[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 034101. doi: 10.11858/gywlxb.20170655 |
[12] | CHEN Qing-Shan, MIAO Ying-Gang, GUO Ya-Zhou, LI Yu-Long. Comparative Analysis of 3 Constitutive Models for 93 Tungsten Alloy[J]. Chinese Journal of High Pressure Physics, 2017, 31(6): 753-760. doi: 10.11858/gywlxb.2017.06.010 |
[13] | LU Guo-Yun, GUAN Wen-Bo, YANG Hui-Wei, HAN Zhi-Jun, LEI Jian-Ping. Deformation Mode of Hemispherical Shell under Static Load[J]. Chinese Journal of High Pressure Physics, 2014, 28(2): 137-144. doi: 10.11858/gywlxb.2014.02.002 |
[14] | WANG Peng-Fei, XU Song-Lin, HU Shi-Sheng. A Constitutive Relation of Aluminum Foam Coupled with Temperature and Strain Rate[J]. Chinese Journal of High Pressure Physics, 2014, 28(1): 23-28. doi: 10.11858/gywlxb.2014.01.004 |
[15] | CHEN Ding-Ding, LU Fang-Yun, LIN Yu-Liang, JIANG Bang-Hai. Effects of Strain Rate and Temperature on Compressive Properties of an Aluminized PBX[J]. Chinese Journal of High Pressure Physics, 2013, 27(3): 361-366. doi: 10.11858/gywlxb.2013.03.007 |
[16] | WANG Li-Wen, PANG Bao-Jun, CHEN Yong, ZHANG Kai. Study on Dynamic Mechanical Behavior and Constitutive Model of Reactive Powder Concrete after Exposure in High Temperature[J]. Chinese Journal of High Pressure Physics, 2012, 26(4): 361-368. doi: 10.11858/gywlxb.2012.04.001 |
[17] | XIAO Da-Wu, LI Ying-Lei, HU Shi-Sheng. Constitutive Model of Pure Zirconium under High Temperature and High Strain Rate[J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 46-50 . doi: 10.11858/gywlxb.2009.01.008 |
[18] | WANG Zheng, NI Yu-Shan, CAO Ju-Zhen, ZHANG Wen. Building of a Constitutive Model for Concrete under Dynamic Impact[J]. Chinese Journal of High Pressure Physics, 2006, 20(4): 337-344 . doi: 10.11858/gywlxb.2006.04.001 |
[19] | PENG Jian-Xiang, LI Da-Hong. The Influence of Temperature and Strain Rate on the Flow Stress of Tantalum[J]. Chinese Journal of High Pressure Physics, 2001, 15(2): 146-150 . doi: 10.11858/gywlxb.2001.02.012 |
[20] | LI Mao-Sheng, WANG Zheng-Yan, CHEN Dong-Quan, WANG Xiao-Sha. The Dependence of Constitutive Model on the Density, Temperature, Pressure and Strain Rate[J]. Chinese Journal of High Pressure Physics, 1992, 6(1): 54-57 . doi: 10.11858/gywlxb.1992.01.008 |