Volume 40 Issue 1
Jan 2026
Turn off MathJax
Article Contents
DENG Changhao, CHEN Bo, DAI Jiayu. Translational-Rotational Decoupling Dynamics of High-Pressure Liquid Water under Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010104. doi: 10.11858/gywlxb.20251222
Citation: DENG Changhao, CHEN Bo, DAI Jiayu. Translational-Rotational Decoupling Dynamics of High-Pressure Liquid Water under Quasi-Isentropic Compression[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010104. doi: 10.11858/gywlxb.20251222

Translational-Rotational Decoupling Dynamics of High-Pressure Liquid Water under Quasi-Isentropic Compression

doi: 10.11858/gywlxb.20251222
  • Received Date: 09 Oct 2025
  • Rev Recd Date: 01 Dec 2025
  • Available Online: 03 Dec 2025
  • Issue Publish Date: 05 Jan 2026
  • The ubiquitous presence of water, from Earth and planetary bodies to interstellar space, renders its phase behavior across an extensive thermodynamic range fundamental to understanding key scientific phenomena such as biochemical reactions, climate dynamics, and planetary evolution. Nevertheless, although liquid water exhibits distinct anomalous behaviors under extreme pressure, research has been hampered by experimental limitations and computational complexity, resulting in scarce atomic-scale data and hindered understanding of its microscopic mechanisms. To address this, our study employed a deep learning interaction model trained on high-precision ab initio data. Employing molecular dynamics simulations, we compressed liquid water isentropically to tens of thousands of atmospheres. Systematic analysis of its structural and dynamic properties revealed that elevated pressure significantly disrupts the inherent tetrahedral local coordination of water molecules, enhancing their rotational mobility. Conversely, translational mobility is severely suppressed in this highly condensed state. The mean squared displacement of water molecules under high pressure exhibits a characteristic three-stage behavior which is typical of glassy systems: ballistic transport, a plateau, and diffusion. Macroscopically, this reduced translational mobility manifests as a substantial increase in shear viscosity. A critical finding is that, unlike supercooled water under ambient pressure where translational and rotational motions are strongly coupled, liquid water under dynamic high pressure exhibits an intrinsic decoupling of these motions. The insights from this work are expected to offer significant microscopic understanding for crucial scientific questions, including the response of materials under dynamic loading and the solidification of metastable liquids.

     

  • loading
  • [1]
    GALLO P, AMANN-WINKEL K, ANGELL C A, et al. Water: a tale of two liquids [J]. Chemical Reviews, 2016, 116(13): 7463–7500. doi: 10.1021/acs.chemrev.5b00750
    [2]
    BERNAL J D, FOWLER R H. A theory of water and ionic solution, with particular reference to hydrogen and hydroxyl ions [J]. The Journal of Chemical Physics, 1933, 1(8): 515–548. doi: 10.1063/1.1749327
    [3]
    PALLARES G, EL MEKKI AZOUZI M, GONZÁLEZ M A, et al. Anomalies in bulk supercooled water at negative pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(22): 7936–7941. doi: 10.1073/pnas.1323366111
    [4]
    GARTNER Ⅲ T E, PIAGGI P M, CAR R, et al. Liquid-liquid transition in water from first principles [J]. Physical Review Letters, 2022, 129(25): 255702. doi: 10.1103/PhysRevLett.129.255702
    [5]
    EICHLER J, STEFANSKI J, ROCA J M, et al. Shear and bulk viscosities of water up to 1.6 GPa and anomaly in the structural relaxation time [J]. Physical Review Letters, 2025, 134(13): 134101. doi: 10.1103/PhysRevLett.134.134101
    [6]
    DOLAN D H, KNUDSON M D, HALL C A, et al. A metastable limit for compressed liquid water [J]. Nature Physics, 2007, 3(5): 339–342. doi: 10.1038/nphys562
    [7]
    DUFFY T S, SMITH R F. Ultra-high pressure dynamic compression of geological materials [J]. Frontiers in Earth Science, 2019, 7: 23. doi: 10.3389/feart.2019.00023
    [8]
    MARSHALL M C, MILLOT M, FRATANDUONO D E, et al. Metastability of liquid water freezing into ice Ⅶ under dynamic compression [J]. Physical Review Letters, 2021, 127(13): 135701. doi: 10.1103/PhysRevLett.127.135701
    [9]
    PÉPIN C M, ANDRÉ R, OCCELLI F, et al. Metastable water at several compression rates and its freezing kinetics into ice Ⅶ [J]. Nature Communications, 2024, 15(1): 8239. doi: 10.1038/S41467-024-52576-Z
    [10]
    BERENDSEN H J C, GRIGERA J R, STRAATSMA T P. The missing term in effective pair potentials [J]. Journal of Physical Chemistry, 1987, 91(24): 6269–6271. doi: 10.1021/j100308a038
    [11]
    JORGENSEN W L, CHANDRASEKHAR J, MADURA J D, et al. Comparison of simple potential functions for simulating liquid water [J]. The Journal of Chemical Physics, 1983, 79(2): 926–935. doi: 10.1063/1.445869
    [12]
    YAGASAKI T, MATSUMOTO M, TANAKA H. Phase diagrams of TIP4P/2005, SPC/E, and TIP5P water at high pressure [J]. The Journal of Physical Chemistry B, 2018, 122(31): 7718–7725. doi: 10.1021/acs.jpcb.8b04441
    [13]
    CAR R, PARRINELLO M. Unified approach for molecular dynamics and density-functional theory [J]. Physical Review Letters, 1985, 55(22): 2471–2474. doi: 10.1103/PhysRevLett.55.2471
    [14]
    邓莉, 刘红, 田华, 等. 高温高压下MgSiO3熔体结构的第一性原理分子动力学研究 [J]. 高压物理学报, 2014, 28(3): 273–282. doi: 10.11858/gywlxb.2014.03.003

    DENG L, LIU H, TIAN H, et al. First-principles molecular dynamics study of the structure of MgSiO3 melt at high temperatures and high pressures [J]. Chinese Journal of High Pressure Physics, 2014, 28(3): 273–282. doi: 10.11858/gywlxb.2014.03.003
    [15]
    ZHANG L F, WANG H, CAR R, et al. Phase diagram of a deep potential water model [J]. Physical Review Letters, 2021, 126(23): 236001. doi: 10.1103/PhysRevLett.126.236001
    [16]
    CHANG X J, CHEN B, ZENG Q Y, et al. Theoretical evidence of H-He demixing under Jupiter and Saturn conditions [J]. Nature Communications, 2024, 15(1): 8543. doi: 10.1038/s41467-024-52868-4
    [17]
    QIU R, ZENG Q Y, WANG H, et al. Anomalous thermal transport across the superionic transition in ice [J]. Chinese Physics Letters, 2023, 40(11): 116301. doi: 10.1088/0256-307X/40/11/116301
    [18]
    YANG F H, ZENG Q Y, CHEN B, et al. Lattice thermal conductivity of MgSiO3 perovskite and post-perovskite under lower mantle conditions calculated by deep potential molecular dynamics [J]. Chinese Physics Letters, 2022, 39(11): 116301. doi: 10.1088/0256-307X/39/11/116301
    [19]
    CHEN T, LIU Q R, LIU Y, et al. Combining stochastic density functional theory with deep potential molecular dynamics to study warm dense matter [J]. Matter and Radiation at Extremes, 2024, 9(1): 015604. doi: 10.1063/5.0163303
    [20]
    CHEN M H, KO H Y, REMSING R C, et al. Ab initio theory and modeling of water [J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(41): 10846–10851. doi: 10.1073/pnas.1712499114
    [21]
    RAVELO R, HOLIAN B L, GERMANN T C. High strain rates effects in quasi-isentropic compression of solids [J]. AIP Conference Proceedings, 2009, 1195(1): 825–828. doi: 10.1063/1.3295269
    [22]
    THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
    [23]
    ZENG J Z, ZHANG D, LU D H, et al. DeePMD-kit V2: a software package for deep potential models [J]. The Journal of Chemical Physics, 2023, 159(5): 054801. doi: 10.1063/5.0155600
    [24]
    GREEN M S. Markoff random processes and the statistical mechanics of time-dependent phenomena. Ⅱ. irreversible processes in fluids [J]. The Journal of Chemical Physics, 1954, 22(3): 398–413. doi: 10.1063/1.1740082
    [25]
    KUBO R, YOKOTA M, NAKAJIMA S. Statistical-mechanical theory of irreversible processes. Ⅱ. response to thermal disturbance [J]. Journal of the Physical Society of Japan, 1957, 12(11): 1203–1211. doi: 10.1143/JPSJ.12.1203
    [26]
    MAGINN E J, MESSERLY R A, CARLSON D J, et al. Best practices for computing transport properties 1. self-diffusivity and viscosity from equilibrium molecular dynamics [article v1.0] [J]. Living Journal of Computational Molecular Science, 2019, 1(1): 6324–6324. doi: 10.33011/livecoms.1.1.6324
    [27]
    MAZZA M G, GIOVAMBATTISTA N, STARR F W, et al. Relation between rotational and translational dynamic heterogeneities in water [J]. Physical Review Letters, 2006, 96(5): 057803. doi: 10.1103/PhysRevLett.96.057803
    [28]
    SILVESTRELLI P L. Transport properties in liquids from first-principles: the case of liquid water and liquid argon [J]. The Journal of Chemical Physics, 2023, 158(13): 134503. doi: 10.1063/5.0144353
    [29]
    GOSLING E M, MCDONALD I R, SINGER K. On the calculation by molecular dynamics of the shear viscosity of a simple fluid [J]. Molecular Physics, 1973, 26(6): 1475–1484. doi: 10.1080/00268977300102631
    [30]
    BOWMAN R W, GIBSON G M, PADGETT M J, et al. Optical trapping at gigapascal pressures [J]. Physical Review Letters, 2013, 110(9): 095902. doi: 10.1103/PhysRevLett.110.095902
    [31]
    MATHAROO G S, RAZUL M S G, POOLE P H. Structural and dynamical heterogeneity in a glass-forming liquid [J]. Physical Review E, 2006, 74(5): 050502. doi: 10.1103/PhysRevE.74.050502
    [32]
    ZHANG X, YAO Y F, LI H Y, et al. Fast crystal growth of ice Ⅶ owing to the decoupling of translational and rotational ordering [J]. Communications Physics, 2023, 6(1): 164. doi: 10.1038/s42005-023-01285-y
    [33]
    HARRIS K R, WOOLF L A. Temperature and volume dependence of the viscosity of water and heavy water at low temperatures [J]. Journal of Chemical & Engineering Data, 2004, 49(4): 1064–1069. doi: 10.1021/je049668+
    [34]
    KRYNICKI K, GREEN C D, SAWYER D W. Pressure and temperature dependence of self-diffusion in water [J]. Faraday Discussions of the Chemical Society, 1978, 66: 199–208. doi: 10.1039/DC9786600199
    [35]
    HERRERO C, PAULETTI M, TOCCI G, et al. Connection between water’s dynamical and structural properties: insights from ab initio simulations [J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(21): e2121641119. doi: 10.1073/pnas.2121641119
    [36]
    YAO Y, KANAI Y. Temperature dependence of nuclear quantum effects on liquid water via artificial neural network model based on SCAN meta-GGA functional [J]. The Journal of Chemical Physics, 2020, 153(4): 044114. doi: 10.1063/5.0012815
    [37]
    ORSI M. Comparative assessment of the ELBA coarse-grained model for water [J]. Molecular Physics, 2014, 112(11): 1566–1576. doi: 10.1080/00268976.2013.844373
    [38]
    SOPER A K. The radial distribution functions of water and ice from 220 to 673 K and at pressures up to 400 MPa [J]. Chemical Physics, 2000, 258(2/3): 121–137. doi: 10.1016/S0301-0104(00)00179-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(2)

    Article Metrics

    Article views(71) PDF downloads(5) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return