Volume 39 Issue 11
Nov 2025
Turn off MathJax
Article Contents
GUO Chengcheng, ZHANG Ruizhi, LIU Zhiqiang, HUANG Zihao, ZHANG Jian, LUO Guoqiang, SHEN Qiang. Review on Stress-Strain Rate Controllable Loading of Functionally Graded Materials[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110101. doi: 10.11858/gywlxb.20251212
Citation: GUO Chengcheng, ZHANG Ruizhi, LIU Zhiqiang, HUANG Zihao, ZHANG Jian, LUO Guoqiang, SHEN Qiang. Review on Stress-Strain Rate Controllable Loading of Functionally Graded Materials[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110101. doi: 10.11858/gywlxb.20251212

Review on Stress-Strain Rate Controllable Loading of Functionally Graded Materials

doi: 10.11858/gywlxb.20251212
  • Received Date: 26 Sep 2025
  • Rev Recd Date: 10 Oct 2025
  • Available Online: 29 Oct 2025
  • Issue Publish Date: 05 Nov 2025
  • Given the dependence that key material dynamic properties in critical fields (e.g., national defense security and high-end manufacturing) have on stress-strain rate-controlled loading. This paper briefly reviews and summarizes domestic and international research progress on achieving stress-strain rate-controlled loading for functionally graded materials. This review focuses on advances in studying dynamic material properties related to controlled stress-strain rate loading in functionally graded composites. It outlines the influence of material dynamic properties on controlled stress-strain rate loading and methods for obtaining composite dynamic properties, providing a reference for understanding controlled stress-strain rate loading technology.

     

  • loading
  • [1]
    GU Y L, ZHANG H L, XU Z, et al. Design and application of electrocatalyst based on machine learning [J]. Interdisciplinary Materials, 2025, 4(1): 456–479. doi: 10.1002/idm2.12249
    [2]
    JIANG X, XUE D Z, BAI Y, et al. Al4 Materials: transforming the landscape of materials science and engineering [J]. Review of Materials Research, 2025, 1: 100010. doi: 10.1016/j.revmat.2025.100010
    [3]
    LIU Q Y, WU D Z. Machine learning and feature representation approaches to predict stress-strain curves of additively manufactured metamaterials with varying structure and process parameters [J]. Materials & Design, 2024, 241: 112932. doi: 10.1016/j.matdes.2024.112932
    [4]
    PEI Z R, YIN J Q, ZHANG J X. Language models for materials discovery and sustainability: progress, challenges, and opportunities [J]. Progress in Materials Science, 2025, 154: 101495. doi: 10.1016/j.pmatsci.2025.101495
    [5]
    WANG G J, HU J J, ZHOU J, et al. Knowledge-guided large language model for material science [J]. Review of Materials Research, 2025, 1: 100007. doi: 10.1016/j.revmat.2025.100007
    [6]
    WANG G J, WANG E P, LI Z F, et al. Exploring the mathematic equations behind the materials science data using interpretable symbolic regression [J]. Interdisciplinary Materials, 2024, 3: 637–657. doi: 10.1002/idm2.12180
    [7]
    BURGER B, MAFFETTONE P M, GUSEV V V, et al. A mobile robotic chemist [J]. Nature, 2020, 583: 347–241. doi: 10.1038/s41586-020-2442-2
    [8]
    SONG X S, WANG W W, DENG Y J, et al. Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs [J]. Engineering Structures, 2024, 306: 117761. doi: 10.1016/j.engstruct.2024.117761
    [9]
    TIAN S H, JIANG X, WANG W R, et al. Steel design based on a large language model [J]. Acta Materialia, 2025, 285: 120663. doi: 10.1016/j.actamat.2024.120663
    [10]
    WANG C C, WEI X L, ZWAAG V D S, et al. From creep-life prediction to ultra-creep-resistant steel design: an uncertainty-informed machine learning approach [J]. Acta Materialia, 2025, 292: 121073. doi: 10.1016/j.actamat.2025.121073
    [11]
    WANG W R, JIANG X, LI W Y, et al. Design of superalloys with multiple properties via multi-task learning [J]. Acta Materialia, 2025, 294: 121161. doi: 10.1016/j.actamat.2025.121161
    [12]
    WANG W R, JIANG X, TIAN S H, et al. Alloy synthesis and processing by semi-supervised text mining [J]. NPJ Computational Materials, 2023, 9: 183. doi: 10.1038/s41524-023-01138-w
    [13]
    YANG C, KIM Y S, RYU S H, et al. Prediction of composite microstructure stress-strain curves using convolutional neural networks [J]. Materials & Design, 2020, 189: 108509. doi: 10.1016/j.matdes.2020.108509
    [14]
    YU S L, CHAI H Y, XIONG Y Q, et al. Studying complex evolution of hyperelastic materials under external field stimuli using artificial neural networks with spatiotemporal features in a small-scale dataset [J]. Advanced Materials, 2022, 34: 2202908. doi: 10.1002/adma.202200908
    [15]
    YU S L, RAN N, LIU J J. Large-language models: the game-changers for materials science research [J]. Artificial Intelligence Chemistry, 2024, 2: 100076. doi: 10.1016/j.aichem.2024.100076
    [16]
    FAN C H, LUO H, ZHAO Q C, et al. Deep learning accelerated the discovery of multi-principal element alloys with various strength-toughness trade-offs [J]. MGE Advances, 2025, 3: e70020. doi: 10.1002/mgea.70020
    [17]
    DING Z, LI Y T, JIANG H, et al. The integral role of high-entropy alloys in advancing solid-state hydrogen storage [J]. Interdisciplinary Materials, 2025, 4(1): 75–108. doi: 10.1002/idm2.12216
    [18]
    TIAN Y S, SU Z P, CHEN L L, et al. Optimizing beveled diamond anvils via finite element analysis [J]. International Journal of Mechanical Sciences, 2025, 302: 110602. doi: 10.1016/j.ijmecsci.2025.110602
    [19]
    WEI J, LUO G Q, WEI Q Q, et al. Quantitative analysis of strain rate and failure modes in sandwich structures under high-velocity impact for ballistic performance optimization [J]. International Journal of Impact Engineering, 2025, 206: 105449. doi: 10.1016/j.ijimpeng.2025.105449
    [20]
    LEMKE R W, KNUDSON M D, DAVIS J P. Magnetically driven hyper-velocity launch capability at the Sandia Z accelerator [J]. International Journal of Impact Engineering, 2011, 38(6): 480–485. doi: 10.1016/j.ijimpeng.2010.10.019
    [21]
    FRATANDUONO D E, MILLOT M, BRAUN D G, et al. Establishing gold and platinum standards to 1 terapascal using shockless compression [J]. Science, 2021, 372(6546): 1063–1068. doi: 10.1126/science.abh0364
    [22]
    SMITH R F, EGGERT J H, JEANLOZ R, et al. Ramp compression of diamond to five terapascals [J]. Nature, 2014, 511(7509): 330–333. doi: 10.1038/nature13526
    [23]
    新野 正之, 平井 敏雄, 渡边 龙三. 傾斜機能材料——宇宙機用超耐熱材料を目指して [J]. 日本複合材料学会誌, 1987, 13(6): 257–264.
    [24]
    LI Y, FENG Z Y, HAO L, et al. A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties [J]. Advanced Materials Technologies, 2020, 5(6): 1900981. doi: 10.1002/admt.201900981
    [25]
    RAY A, SINGLA A. Hydrodynamic simulation of hypervelocity generation by use of functionally graded materials: velocity enhancement study [J]. International Journal of Impact Engineering, 2021, 152: 103843. doi: 10.1016/j.ijimpeng.2021.103843
    [26]
    王宇, 柏劲松, 王翔, 等. 汇聚型超高速发射装置一级飞片的计算设计 [J]. 高压物理学报, 2015, 29(2): 155–160. doi: 10.11858/gywlxb.2015.02.011

    WANG Y, BAI J S, WANG X, et al. Computational design of graded density impactors for convergent hypervelocity launchers [J]. Chinese Journal of High Pressure Physics, 2015, 29(2): 155–160. doi: 10.11858/gywlxb.2015.02.011
    [27]
    王宇, 柏劲松, 王翔, 等. 汇聚型超高速发射装置的发射腔计算设计 [J]. 高压物理学报, 2016, 30(3): 235–241. doi: 10.11858/gywlxb.2016.03.009

    WANG Y, BAI J S, WANG X, et al. Computational design of the cavity in the enhanced hypervelocity launcher [J]. Chinese Journal of High Pressure Physics, 2016, 30(3): 235–241. doi: 10.11858/gywlxb.2016.03.009
    [28]
    HUANG Y H, ZHANG R Z, LIU S X, et al. Graded density impactor design via machine learning and numerical simulation: achieve controllable stress and strain rate [J]. Defence Technology, 2025, 51: 262–273. doi: 10.1016/j.dt.2025.05.003
    [29]
    JIA H, ZHANG J, GE S, et al. Achieving high-strength porous tungsten with wide porosity range via selective dissolution W-Ti-Fe precursor [J]. International Journal of Refractory Metals and Hard Materials, 2024, 121: 106685. doi: 10.1016/j.ijrmhm.2024.106685
    [30]
    LI P B, HU J N, FANG T, et al. Microstructure regulation and strengthening mechanism of Al/Ag composites prepared by Plasma Activated Sintered [J]. Materials Science and Engineering: A, 2022, 852: 143631. doi: 10.1016/j.msea.2022.143631
    [31]
    LUO G Q, LI P B, HU J N, et al. Synergistic effect of Ag and C addition into Al-Cu matrix composites [J]. Journal of Materials Science, 2022, 57(24): 11013–11025. doi: 10.1007/s10853-022-07189-6
    [32]
    ZHANG R Z, CHEN J, ZHU Y X, et al. Correlation between the structure and compressive property of PMMA microcellular foams fabricated by supercritical CO2 foaming method [J]. Polymers, 2020, 12(2): 315. doi: 10.3390/polym12020315
    [33]
    ZHOU D F, XIONG Y L, YUAN H, et al. Synthesis and compressive behaviors of PMMA microporous foam with multi-layer cell structure [J]. Composites Part B: Engineering, 2019, 165: 272–278. doi: 10.1016/j.compositesb.2018.11.118
    [34]
    LIU Z Q, WU Z Q, LI L, et al. A multi-dimensional graded structure design based on structural impact response behavior for stress-strain rate control [J]. Composite Structures, 2025, 370: 119408. doi: 10.1016/j.compstruct.2025.119408
    [35]
    WU A J, WU Z Q, LIU Z Q, et al. Regulating loading strain rates under shockless quasi-isentropic compression using a resin-based areal density gradient flyer [J]. Journal of Materials Research and Technology, 2024, 30: 919–929. doi: 10.1016/j.jmrt.2024.03.106
    [36]
    GUO H C, RAO M, ZHANG J, et al. Electromigration-enhanced Kirkendall effect of Cu/Ti direct diffusion welding by sparking plasma sintering [J]. Journal of Materials Processing Technology, 2023, 315: 117933. doi: 10.1016/j.jmatprotec.2023.117933
    [37]
    江宇达, 张睿智, 吴楯, 等. Ti-Pt周期调制梯度材料的制备及准等熵加载特性 [J]. 高压物理学报, 2024, 38(6): 064205 doi: 10.11858/gywlxb.20240816

    JIANG Y D, ZHANG R Z, WU D, et al. Preparation and quasi-isentropic loading characteristics of Ti-Pt periodically modulated gradient material [J]. Chinese Journal of High Pressure Physics, 2024, 38(6): 064205 doi: 10.11858/gywlxb.20240816
    [38]
    彭建祥. Johnson-Cook本构模型和Steinberg本构模型的比较研究 [D]. 绵阳: 中国工程物理研究院, 2006: 1−4.

    PENG J X. Comparative study of Johnson-Cook constitutive model and Steinberg constitutive model [D]. Mianyang: China Academy of Engineering Physics, 2006: 1−4.
    [39]
    ZHAO Y, ZHANG R Z, CHENG P, et al. Development of multi-layered graded density Cu/PMMA for controlled stress and strain rate behavior [J]. Journal of Applied Physics, 2025, 137(20): 205902. doi: 10.1063/5.0252790
    [40]
    WANG X, DAI C D, WANG Q S, et al. Development of a three-stage gas gun launcher for ultrahigh-pressure Hugoniot measurements [J]. Review of Scientific Instruments, 2019, 90(1): 013903. doi: 10.1063/1.5035502
    [41]
    BAI J S, WANG X, PEI X Y, et al. An improved impactor design for eliminating spallation in high-impedance flyers during hypervelocity launch [J]. Experimental Mechanics, 2016, 56: 1661–1664. doi: 10.1007/s11340-016-0155-0
    [42]
    CHEN P A, LUO G Q, LI M J, et al. Effects of Zn additions on the solid-state sintering of W-Cu composites [J]. Materials & Design, 2012, 36: 108–112. doi: 10.1016/j.matdes.2011.10.006
    [43]
    柏劲松, 王翔, 华劲松, 等. 气炮发射获得超高速碰撞器的数值模拟研究进展 [J]. 中国科学: 物理学 力学 天文学, 2014, 44: 547–556. doi: 10.1360/132012-782

    BAI J S, WANG X, HUA J S, et al. The gas gun launch advances in numerical simulation of hypervelocity impact. [J]. Science China Physics, Mechanics and Astronomy‌‌, 2014, 44: 547–556. doi: 10.1360/132012-782
    [44]
    HUANG J, ZHANG J, ZHU K, et al. Using graded density impactor to achieve quasi-isentropic loading with stress and strain-rate controlled [J]. Journal of Applied Physics, 2024, 135(8): 085901. doi: 10.1063/5.0189243
    [45]
    BROWN J L, ADAMS D P, ALEXANDER C S, et al. Estimates of Ta strength at ultrahigh pressures and strain rates using thin-film graded-density impactors [J]. Physical Review B, 2019, 99(21): 214105. doi: 10.1103/PhysRevB.99.214105
    [46]
    LI P B, LUO G Q, ZHANG X S, et al. The synergistic effects of heterogeneous structures enhance the strength-ductility of Al-Cu composites [J]. Journal of Materials Research and Technology, 2024, 33: 7284–7292. doi: 10.1016/j.jmrt.2024.11.128
    [47]
    HU J N, TAN Y, LI X M, et al. Structure characterization and impact effect of Al-Cu graded materials prepared by tape casting [J]. Materials, 2022, 15(14): 4834. doi: 10.3390/ma15144834
    [48]
    CHEN F, ZHAO X F, HUANG Z F, et al. Bending and vibration analysis of trigonometric varying functionally graded material via a novel third-order shear deformation theory [J]. Acta Mechanica Solida Sinica, 2024, 37(6): 919–931. doi: 10.1007/s10338-024-00507-2
    [49]
    BOBBILI R, RAMAKRISHNA B, MADHU V. Dynamic compressive behavior and fracture modeling of titanium alloy IMI 834 [J]. Journal of Alloys and Compounds, 2017, 714: 225–231. doi: 10.1016/j.jallcom.2017.04.228
    [50]
    CASEM D T, DANDEKAR D P. Shock and mechanical response of 2139-T8 aluminum [J]. Journal of Applied Physics, 2012, 111(6): 063508. doi: 10.1063/1.3694661
    [51]
    YAICH M, AYED Y, BOUAZIZ Z, et al. Numerical analysis of constitutive coefficients effects on FE simulation of the 2D orthogonal cutting process: application to the Ti6Al4V [J]. The International Journal of Advanced Manufacturing Technology, 2017, 93(1/2/3/4): 283–303. doi: 10.1007/s00170-016-8934-4
    [52]
    DONEY R L, NIEDERHAUS J H J, FULLER T J, et al. Effects of equations of state and constitutive models on simulating copper shaped charge jets in ALEGRA [J]. International Journal of Impact Engineering, 2020, 136: 103428. doi: 10.1016/j.ijimpeng.2019.103428
    [53]
    ZHANG Y W, GUO C C, HUANG Y H, et al. Accurate finite element simulations of dynamic behaviour: constitutive models and analysis with deep learning [J]. Materials, 2024, 17(3): 643. doi: 10.3390/ma17030643
    [54]
    SIGNETTI S, HEINE A. Transition regime between high-velocity and hypervelocity impact in metals—a review of the relevant phenomena for material modeling in ballistic impact studies [J]. International Journal of Impact Engineering, 2022, 167: 104213. doi: 10.1016/j.ijimpeng.2022.104213
    [55]
    SIGNETTI S, HEINE A. Characterization of the transition regime between high-velocity and hypervelocity impact: thermal effects and energy partitioning in metals [J]. International Journal of Impact Engineering, 2021, 151: 103774. doi: 10.1016/j.ijimpeng.2020.103774
    [56]
    PRIME M B, ARSENLIS A, AUSTIN R A, et al. A broad study of tantalum strength from ambient to extreme conditions [J]. Acta Materialia, 2022, 231: 117875. doi: 10.1016/j.actamat.2022.117875
    [57]
    KOSITSKI R, MORDEHAI D. A dislocation-based dynamic strength model for tantalum across a large range of strain rates [J]. Journal of Applied Physics, 2021, 129(16): 165108. doi: 10.1063/5.0045131
    [58]
    BARTON N R, BERNIER J V, BECKER R, et al. A multiscale strength model for extreme loading conditions [J]. Journal of Applied Physics, 2011, 109(7): 073501. doi: 10.1063/1.3553718
    [59]
    KRITCHER A L, SWIFT D C, DÖPPNER T, et al. A measurement of the equation of state of carbon envelopes of white dwarfs [J]. Nature, 2020, 584(7819): 51–54. doi: 10.1038/s41586-020-2535-y
    [60]
    KIM D, SMITH R F, OCAMPO I K, et al. Structure and density of silicon carbide to 1.5 TPa and implications for extrasolar planets [J]. Nature Communications, 2022, 13(1): 2260. doi: 10.1038/s41467-022-29762-y
    [61]
    陈子博, 谢普初, 刘东升, 等. 基于广义波阻抗梯度飞片的准等熵压缩技术 [J]. 爆炸与冲击, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407

    CHEN Z B, XIE P C, LIU D S, et al. Quasi-isentropic compression technique based on generalized wave impedance gradient flyer [J]. Explosion and Shock Waves, 2019, 39(4): 041406. doi: 10.11883/bzycj-2018-0407
    [62]
    SUN W F, ZHU T T, CHEN P W, et al. Dynamic implosion of submerged cylindrical shell under the combined hydrostatic and shock loading [J]. Thin-Walled Structures, 2022, 170: 108574. doi: 10.1016/j.tws.2021.108574
    [63]
    YOUNG G, LIU X, LENG C W, et al. Average models for calculating the shock equation of state of alloy and mixture [J]. Japanese Journal of Applied Physics, 2019, 58(6): 066004. doi: 10.7567/1347-4065/ab1c1e
    [64]
    MILLETT J C F, BOURNE N K, BARNES N R. The behavior of an epoxy resin under one-dimensional shock loading [J]. Journal of Applied Physics, 2002, 92(11): 6590–6594. doi: 10.1063/1.1506389
    [65]
    MITCHELL A C, NELLIS W J. Shock compression of aluminum, copper, and tantalum [J]. Journal of Applied Physics, 1981, 52(5): 3363–3374. doi: 10.1063/1.329160
    [66]
    MUNSON D E, MAY R P. Dynamically determined high pressure compressibilities of three epoxy resin systems, 1972, 43(3): 962−971.
    [67]
    耿芳芳. 铜/镍复层箔微拉伸塑性变形行为研究 [D]. 哈尔滨: 哈尔滨工业大学, 2017: 34−38.

    GENG F F. Plastic deformation behaviors of Cu/Ni clad foil in uniaxial micro-tension [D]. Harbin: Harbin Institute of Technology, 2017: 34−38.
    [68]
    MEYERS M A. Dynamic behavior of materials [M]. John Wiley & Sons, Inc. , 1994.
    [69]
    PETEL O E, JETTÉ F X. Comparison of methods for calculating the shock hugoniot of mixtures [J]. Shock Waves, 2010, 20(1): 73–83. doi: 10.1007/s00193-009-0230-x
    [70]
    LÄSSIG T R, MAY M, HEISSERER U, et al. Effect of consolidation pressure on the impact behavior of UHMWPE composites [J]. Composites Part B: Engineering, 2018, 147: 47–55. doi: 10.1016/j.compositesb.2018.04.030
    [71]
    MCQUEEN R G, MARSH S P, FRITZ J N. Hugoniot equation of state of twelve rocks [J]. Journal of Geophysical Research, 1967, 72(20): 4999–5036. doi: 10.1029/JZ072i020p04999
    [72]
    LI J B, LI W B, WANG X M, et al. Shock response and prediction model of equation of state for aluminum powder/rubber matrix composites [J]. Materials & Design, 2020, 191: 108632. doi: 10.1016/j.matdes.2020.108632
    [73]
    KITTELL D E, ABERE M J, SPECHT P E, et al. Continuum shock mixture models for Ni+Al multilayers: individual layers and bulk equations of state [J]. Journal of Applied Physics, 2025, 137(7): 075102. doi: 10.1063/5.0237889
    [74]
    YOUNG G, FAN L L, ZHAO B, et al. Equation of state for Fe-9.0 wt% O up to 246 GPa: implications for oxygen in the Earth’s outer core [J]. Journal of Geophysical Research: Solid Earth, 2021, 126(2): e2020JB021056. doi: 10.1029/2020JB021056
    [75]
    谭华. 实验冲击波物理 [M]. 北京: 国防工业出版社, 2018: 5−6.

    TAN H. Experimental shock wave physics [M]. Beijing: National Defense Industry Press, 2018: 5−6.
    [76]
    MUHAMMAD N A, WU C S, TIAN W H. Effect of ultrasonic vibration on the intermetallic compound layer formation in Al/Cu friction stir weld joints [J]. Journal of Alloys and Compounds, 2019, 785: 512–522. doi: 10.1016/j.jallcom.2019.01.170
    [77]
    XU H, LIU C, SILBERSCHMIDT V V, et al. Behavior of aluminum oxide, intermetallics and voids in Cu-Al wire bonds [J]. Acta Materialia, 2011, 59: 5661–5673. doi: 10.1016/j.actamat.2011.05.041
    [78]
    LI P B, LUO G Q, ZHAO G N, et al. Scaling effect of intermetallic compounds in Al-Cu composites [J]. Materials Today Communications, 2025, 47: 113187. doi: 10.1016/j.mtcomm.2025.113187
    [79]
    GUO C C, ZHANG R Z, LI L, et al. Multiscale analysis of Al4Cu9 intermetallic compounds on shock Hugoniot of Al-Cu composites: experiments and simulations [J]. Composite Structures, 2025, 355: 118866. doi: 10.1016/j.compstruct.2025.118866
    [80]
    YANG X L, HE Y, HE Y, et al. Investigation of the shock compression behaviors of Al/PTFE composites with experimental and a 3D mesoscale-model [J]. Defence Technology, 2022, 18(1): 62–71. doi: 10.1016/j.dt.2020.11.020
    [81]
    ZHU W, LI W H, LI W B, et al. Shock response characteristics and equation of state of high-mass-fraction pressed tungsten powder/polytetrafluoroethylene-based composites [J]. Polymers, 2025, 17(17): 2309. doi: 10.3390/polym17172309
    [82]
    RAZORENOV S, GARKUSHIN G, SAVINYKH A, et al. Strength characteristics of a heat-resistant metal-matrix composite Inconel 625-5%NiTi-TiB2 alloy fabricated by direct laser deposition under shock-wave loading [J]. Metals, 2023, 13(3): 477. doi: 10.3390/met13030477
    [83]
    WANG C, CHEN J, LIANG S H, et al. First-principles calculations to investigate pressure effect on structural, elastic and thermodynamic properties of AlCu, Al2Cu and Al4Cu9 [J]. Vacuum, 2022, 203: 111279. doi: 10.1016/j.vacuum.2022.111279
    [84]
    YANG X, ZENG X G, CHEN H Y, et al. Molecular dynamics investigation on complete Mie-Grüneisen equation of state: Al and Pb as prototypes [J]. Journal of Alloys and Compounds, 2019, 808: 151702. doi: 10.1016/j.jallcom.2019.151702
    [85]
    YANG X, ZENG X G, PU C J, et al. Molecular dynamics modeling of the Hugoniot states of aluminum [J]. AIP Advances, 2018, 8(10): 105212. doi: 10.1063/1.5050426
    [86]
    PU C J, YANG X, XIAO D J, et al. Molecular dynamics simulations of shock melting in single crystal Al and Cu along the principle Hugoniot [J]. Materials Today Communications, 2021, 26: 101990. doi: 10.1016/j.mtcomm.2020.101990
    [87]
    Marsh S P. LASL shock Hugoniot data [M]. California, USA: University of California Press, 1980.
    [88]
    CHIJIOKE A D, NELLIS W J, SILVERA I F. High-pressure equations of state of Al, Cu, Ta, and W [J]. Journal of Applied Physics, 2005, 98: 073526. doi: 10.1063/1.2071449
    [89]
    CHOUDHURI D, GUPTA Y M. Shock compression of aluminum single crystals to 70 GPa: role of crystalline anisotropy [J]. Journal of Applied Physics, 2013, 114: 153504. doi: 10.1063/1.4824825
    [90]
    JU Y Y, ZHANG Q M, GONG Z Z, et al. Molecular dynamics simulation of shock melting of aluminum single crystal [J]. Journal of Applied Physics, 2013, 114: 093507. doi: 10.1063/1.4819298
    [91]
    WANG Y, LI L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype [J]. Physical Review B, 2000, 62(1): 196. doi: 10.1103/PhysRevB.62.196
    [92]
    MITCHELL A C, NELLIS W J, MORIARTY J A, et al. Equation of state of Al, Cu, Mo, and Pb at shock pressures up to 2.4 TPa (24 Mbar) [J]. Journal of Applied Physics, 1991, 69(5): 2981–2986. doi: 10.1063/1.348611
    [93]
    NELLIS W J, MORIARTY J A, MITCHELL A C, et al. Metals physics at ultrahigh pressure: aluminum, copper, and lead as prototypes [J]. Physical Review Letters, 1988, 60(14): 1414. doi: 10.1103/PhysRevLett.60.1414
    [94]
    GUO J, ZHANG Q M, ZHANG L S, et al. Reaction behavior of polytetrafluoroethylene/Al granular composites subjected to planar shock wave [J]. Propellants Explos. Pyrotech, 2017, 42: 300–307. doi: 10.1002/prep.201600115
    [95]
    MOCHALOVA V, UTKIN A, NIKOLAEV D. Shock response of unidirectional carbon polymer composite up to pressures of 200 GPa [J]. Journal of Applied Physics, 2023, 133(24): 245902. doi: 10.1063/5.0155414
    [96]
    ALEXANDER C S, KEY C T, SCHUMACHER S C. Dynamic response and modeling of a carbon fiber-epoxy composite subject to shock loading [J]. Journal of Applied Physics, 2013, 114: 223515. doi: 10.1063/1.4846116
    [97]
    ADTTELBAUM D M, COE J D, RIGG P A, et al. Shockwave response of two carbon fiber-polymer composites to 50 GPa [J]. Journal of Applied Physics, 2014, 116: 194308. doi: 10.1063/1.4898313
    [98]
    ZHOU L, HE H L, ZHANG H, et al. Diamond-TiC composite with an ultrahigh Hugoniot elastic limit [J]. Journal of Applied Physics, 2023, 133(16): 165901. doi: 10.1063/5.0147988
    [99]
    SEKINE T, KOBAYASHI T. NIRIM two-stage light-gas gun and equation of state of carbides [J]. Journal of Materials Processing Technology, 1999, 85: 11–14. doi: 10.1016/S0924-0136(98)00245-3
    [100]
    KATAGIRI K, OZAKI N, UMEDA Y H, et al. Shock response of full density nanopolycrystalline diamond [J]. Physical Review Letters, 2020, 125: 185701. doi: 10.1103/PhysRevLett.125.185701
    [101]
    LI Y Y, ZHANG L, YU Y, et al. Shock response of micro-grained diamond-SiC composite [J]. Journal of Applied Physics, 2021, 130: 025902. doi: 10.1063/5.0048427
    [102]
    MCWILLIAMS R S, EGGERT J H, HICKS D G, et al. Strength effects in diamond under shock compression from 0.1 to 1 TPa [J]. Physical Review B, 2010, 81: 014111. doi: 10.1103/PhysRevB.81.014111
    [103]
    WINEY J M, KNUDSON M D, GUPTA Y M. Shock compression response of diamond single crystals at multimegabar stresses [J]. Physical Review B, 2010, 101: 184105. doi: 10.1103/PhysRevB.101.184105
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views(165) PDF downloads(32) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return