| Citation: | XIANG Shikai, XIAN Yunting, WU Run, SUN Yi, GAN Yuanchao, GENG Huayun, LUO Guoqiang, ZHANG Jian, ZHANG Ruizhi. Optimization and Uncertainty Quantification of High-Fidelity Material Model Parameters for Dynamic Loading Simulation[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110104. doi: 10.11858/gywlxb.20251195 |
| [1] |
刘朋, 王黎钦, 张传伟, 等. 航空发动机主轴轴承状态监测研究现状与发展趋势 [J]. 航空动力学报, 2022, 37(2): 330–343.
LIU P, WANG L Q, ZHANG C W, et al. Research status and development trend of condition monitoring on main-shaft bearings used in aircraft engines [J]. Journal of Aerospace Power, 2022, 37(2): 330–343.
|
| [2] |
向士凯, 耿华运, 孙毅, 等. Yudb V1.0: 2025SR1194507 [P]. 2025.
|
| [3] |
XIAN Y T, XIANG S K, LIU L, et. al. Accurate equation of state of rhenium as pressure cale up to 130 GPa and 3 200 K [J]. AIP Advances, 2022, 12(5): 055313. doi: 10.1063/5.0089292
|
| [4] |
IKUTA D, OHTANI E, FUKUI H, et al. Large density deficit of Earthʼs core revealed by a multi-megabar primary pressure scale [J]. arXiv, 2021: 210402076.
|
| [5] |
STEINBERG D J, LUND C M. A constitutive model for strain rates from 10−4 to 106 s−1 [J]. Journal of Applied Physics, 1989, 65(4): 1528–1533. doi: 10.1063/1.342968
|
| [6] |
MARSH S P. LASL shock Hugoniot data [M]. Berkeley, USA: University of California Press, 1980.
|
| [7] |
GAN Y C, NAN X L, WU D. Dynamic yield behaviors of aluminum under shock and ramp compression: experiments and models [J]. Journal of Applied Physics, 2025, 137: 215902. doi: 10.1063/5.0270423
|
| [8] |
YAO S L, PEI X Y, YU J D, et al. A dislocation-based explanation of quasi-elastic release in shock-loaded aluminum [J]. Journal of Applied Physics, 2017, 121: 035101. doi: 10.1063/1.4974055
|
| [9] |
JOHNSON J N, HIXSON R S, GRAY G T, et al. Quasielastic release in shock-compressed solids [J]. Journal of Applied Physics, 1992, 72(2): 429–441. doi: 10.1063/1.351871
|