Volume 40 Issue 1
Jan 2026
Turn off MathJax
Article Contents
HOU Enze, WANG Xiaoyang, WANG Han. A Machine Learning Potential Model for Simulating Dynamic Mechanical Response of Pb-Sn Alloy[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010106. doi: 10.11858/gywlxb.20251151
Citation: HOU Enze, WANG Xiaoyang, WANG Han. A Machine Learning Potential Model for Simulating Dynamic Mechanical Response of Pb-Sn Alloy[J]. Chinese Journal of High Pressure Physics, 2026, 40(1): 010106. doi: 10.11858/gywlxb.20251151

A Machine Learning Potential Model for Simulating Dynamic Mechanical Response of Pb-Sn Alloy

doi: 10.11858/gywlxb.20251151
  • Received Date: 06 Aug 2025
  • Rev Recd Date: 27 Oct 2025
  • Accepted Date: 28 Nov 2025
  • Available Online: 29 Oct 2025
  • Issue Publish Date: 05 Jan 2026
  • Lead is a low-melting-point metal with a complex temperature-pressure phase diagram. Alloying with tin further reduces its melting temperature, making lead-tin alloys an important model material for studying dynamic mechanical responses and failure behavior. However, experimental characterization of atomic-scale dynamic failure mechanisms in PbSn alloys remains challenging due to current technical limitations. Non-equilibrium molecular dynamics (NEMD) simulations can track atom trajectories and reveal key dynamic processes under dynamic loading-unloading. It thus serves as a critical alternative tool. Yet, the reliability of molecular dynamics relies on the accuracy of interatomic potentials, and currently, no high-accuracy potential exists for PbSn alloys under dynamic conditions. In this work, we develop a machine-learning interatomic potential (DP-PbSn) for PbSn alloys using a concurrent learning scheme. This potential achieves first-principles accuracy across a wide thermodynamic range (0–100 GPa, 0–5000 K), reliably predicting fundamental properties (e.g., lattice constants, elastic constants), defect energetics (e.g., surface energy, stacking fault energy, vacancy formation energy), as well as melting curves and shock Hugoniot curves, demonstrating its suitability for dynamic simulations. Leveraging this potential, we conduct preliminary NEMD simulations to investigate the dynamic mechanical responses of pure Pb and PbSn alloys, elucidating the influence of Sn on phase transitions and plastic deformation under dynamic loading. The DP-PbSn serves as a robust theoretical tool for high-accuracy non-equilibrium molecular dynamics, providing essential insights for experimental studies on the dynamic damage behavior of PbSn alloys.

     

  • loading
  • [1]
    DEWAELE A, MEZOUAR M, GUIGNOT N, et al. Melting of lead under high pressure studied using second-scale time-resolved X-ray diffraction [J]. Physical Review B, 2007, 76(14): 144106. doi: 10.1103/PhysRevB.76.144106
    [2]
    KUZNETSOV A, DMITRIEV V, DUBROVINSKY L, et al. FCC-HCP phase boundary in lead [J]. Solid State Communications, 2002, 122(3/4): 125–127. doi: 10.1016/S0038-1098(02)00112-6
    [3]
    TAKAHASHI T, MAO H K, BASSETT W A. Lead: X-ray diffraction study of a high-pressure polymorph [J]. Science, 1969, 165(3900): 1352–1353. doi: 10.1126/science.165.3900.1352
    [4]
    VANDERBORGH C A, VOHRA Y K, XIA H, et al. BCC lead at 109 GPa: diffraction studies to 208 GPa [J]. Physical Review B, 1990, 41(10): 7338–7340. doi: 10.1103/PhysRevB.41.7338
    [5]
    DAI C D, TAN H, GENG H Y. Model for assessing the melting on Hugoniots of metals: Al, Pb, Cu, Mo, Fe, and U [J]. Journal of Applied Physics, 2002, 92(9): 5019–5026. doi: 10.1063/1.1510561
    [6]
    KARAKAYA I, THOMPSON W T. The Pb-Sn (lead-tin) system [J]. Journal of Phase Equilibria, 1988, 9(2): 144–152. doi: 10.1007/BF02890552
    [7]
    CHEN Y, REN G, TANG T, et al. Experimental study of micro-spalling fragmentation from melted lead [J]. Shock Waves, 2016, 26(2): 221–225. doi: 10.1007/s00193-015-0601-4
    [8]
    ANTIPOV M V, ARININ V A, GEORGIEVSKAYA A B, et al. Experimental and computational damage and ejecta studies of Pb explosively shock loaded to pSL≈32 to 40 GPa [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 300–315. doi: 10.1007/s40870-017-0113-7
    [9]
    XIANG M Z, HU H B, CHEN J. Spalling and melting in nanocrystalline Pb under shock loading: molecular dynamics studies [J]. Journal of Applied Physics, 2013, 113(14): 144312. doi: 10.1063/1.4799388
    [10]
    WANG K, ZHANG F G, HE A M, et al. An atomic view on spall responses of release melted lead induced by decaying shock loading [J]. Journal of Applied Physics, 2019, 125(15): 155107. doi: 10.1063/1.5081920
    [11]
    MAYER A E, MAYER P N. Strain rate dependence of spall strength for solid and molten lead and tin [J]. International Journal of Fracture, 2020, 222(1/2): 171–195. doi: 10.1007/s10704-020-00440-8
    [12]
    LI G M, WANG Y B, WANG K, et al. Shock induced plasticity and phase transition in single crystal lead by molecular dynamics simulations [J]. Journal of Applied Physics, 2019, 126(7): 075902. doi: 10.1063/1.5097621
    [13]
    DAW M S, BASKES M I. Embedded-atom method: derivation and application to impurities, surfaces, and other defects in metals [J]. Physical Review B, 1984, 29(12): 6443–6453. doi: 10.1103/PhysRevB.29.6443
    [14]
    BASKES M I. Modified embedded-atom potentials for cubic materials and impurities [J]. Physical Review B, 1992, 46(5): 2727–2742. doi: 10.1103/PhysRevB.46.2727
    [15]
    HORSFIELD A P, BRATKOVSKY A M, FEARN M, et al. Bond-order potentials: theory and implementation [J]. Physical Review B, 1996, 53(19): 12694–12712. doi: 10.1103/PhysRevB.53.12694
    [16]
    WANG X Y, WANG Z Y, GAO P Y, et al. Data-driven prediction of complex crystal structures of dense lithium [J]. Nature Communications, 2023, 14(1): 2924. doi: 10.1038/s41467-023-38650-y
    [17]
    WANG K, ZHU W J, XIANG M Z, et al. Improved embedded-atom model potentials of Pb at high pressure: application to investigations of plasticity and phase transition under extreme conditions [J]. Modelling and Simulation in Materials Science and Engineering, 2019, 27(1): 015001. doi: 10.1088/1361-651X/aaea55
    [18]
    LIU A Y, GARCA A, COHEN M L, et al. Theory of high-pressure phases of Pb [J]. Physical Review B, 1991, 43(2): 1795–1798. doi: 10.1103/PhysRevB.43.1795
    [19]
    CUI S X, CAI L C, FENG W X, et al. First-principles study of phase transition of tin and lead under high pressure [J]. Physica Status Solidi (B), 2008, 245(1): 53–57. doi: 10.1002/pssb.200743240
    [20]
    CRICCHIO F, BELONOSHKO A B, BURAKOVSKY L, et al. High-pressure melting of lead [J]. Physical Review B, 2006, 73(14): 140103. doi: 10.1103/PhysRevB.73.140103
    [21]
    VOHRA Y K, RUOFF A L. Static compression of metals Mo, Pb, and Pt to 272 GPa: comparison with shock data [J]. Physical Review B, 1990, 42(13): 8651–8654. doi: 10.1103/PhysRevB.42.8651
    [22]
    YU D K, SCHEFFLER M. First-principles study of low-index surfaces of lead [J]. Physical Review B, 2004, 70(15): 155417. doi: 10.1103/PhysRevB.70.155417
    [23]
    BOMBIS C, EMUNDTS A, NOWICKI M, et al. Absolute surface free energies of Pb [J]. Surface Science, 2002, 511(1/2/3): 83–96. doi: 10.1016/S0039-6028(02)01554-6
    [24]
    BARTÓK A P, PAYNE M C, KONDOR R, et al. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons [J]. Physical Review Letters, 2010, 104(13): 136403. doi: 10.1103/PhysRevLett.104.136403
    [25]
    SHAPEEV A V. Moment tensor potentials: a class of systematically improvable interatomic potentials [J]. Multiscale Modeling & Simulation, 2016, 14(3): 1153–1173. doi: 10.1137/15M1054183
    [26]
    THOMPSON A P, SWILER L P, TROTT C R, et al. Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials [J]. Journal of Computational Physics, 2015, 285: 316–330. doi: 10.1016/j.jcp.2014.12.018
    [27]
    ZHANG L F, HAN J Q, WANG H, et al. End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 4441–4451.
    [28]
    高天雨, 曾启昱, 陈博, 等. 超快激光诱导Cu薄膜熔化的神经网络分子动力学研究 [J]. 金属学报, 2024, 60(10): 1439–1450. doi: 10.11900/0412.1961.2024.00143

    GAO T Y, ZENG Q Y, CHEN B, et al. Neural network molecular dynamics study of ultrafast laser-induced melting of copper nanofilms [J]. Acta Metallurgica Sinica, 2024, 60(10): 1439–1450. doi: 10.11900/0412.1961.2024.00143
    [29]
    曾启昱, 陈博, 康冬冬, 等. 大规模、量子精度的分子动力学模拟: 以极端条件液态铁为例 [J]. 物理学报, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258

    ZENG Q Y, CHEN B, KANG D D, et al. Large scale and quantum accurate molecular dynamics simulation: liquid iron under extreme condition [J]. Acta Physica Sinica, 2023, 72(18): 187102. doi: 10.7498/aps.72.20231258
    [30]
    D’SOUZA J X, HU S X, MIHAYLOV D I, et al. Designing a quantum-accurate machine-learning potential to enable large-scale simulations of deuterium under shock [J]. Physics of Plasmas, 2025, 32(4): 042701. doi: 10.1063/5.0254638
    [31]
    PAN S N, SHI J Y, LIANG Z X, et al. Shock compression pathways to pyrite silica from machine learning simulations [J]. Physical Review B, 2024, 110(22): 224101. doi: 10.1103/PhysRevB.110.224101
    [32]
    ZENG Q Y, CHEN B, ZHANG S, et al. Full-scale ab initio simulations of laser-driven atomistic dynamics [J]. NPJ Computational Materials, 2023, 9(1): 213. doi: 10.1038/s41524-023-01168-4
    [33]
    ZHANG Y Z, WANG H D, CHEN W J, et al. DP-GEN: a concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Computer Physics Communications, 2020, 253: 107206. doi: 10.1016/j.cpc.2020.107206
    [34]
    WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics [J]. Computer Physics Communications, 2018, 228: 178–184. doi: 10.1016/j.cpc.2018.03.016
    [35]
    KINGMA D P, BA J. Adam: a method for stochastic optimization [C]//Proceedings of the 3rd International Conference on Learning Representations (ICLR). San Diego: ICLR, 2015.
    [36]
    NOSÉ S. A unified formulation of the constant temperature molecular dynamics methods [J]. The Journal of Chemical Physics, 1984, 81(1): 511–519. doi: 10.1063/1.447334
    [37]
    HOOVER W G. Canonical dynamics: equilibrium phase-space distributions [J]. Physical Review A, 1985, 31(3): 1695–1697. doi: 10.1103/PhysRevA.31.1695
    [38]
    KRYGIER A, POWELL P D, MCNANEY J M, et al. Extreme hardening of Pb at high pressure and strain rate [J]. Physical Review Letters, 2019, 123(20): 205701. doi: 10.1103/PhysRevLett.123.205701
    [39]
    ERNZERHOF M, SCUSERIA G E. Assessment of the Perdew-Burke-Ernzerhof exchange-correlation functional [J]. The Journal of Chemical Physics, 1999, 110(11): 5029–5036. doi: 10.1063/1.478401
    [40]
    SCHLIPF M, GYGI F. Optimization algorithm for the generation of ONCV pseudopotentials [J]. Computer Physics Communications, 2015, 196: 36–44. doi: 10.1016/j.cpc.2015.05.011
    [41]
    ZHOU W Q, ZHENG D Y, LIU Q R, et al. ABACUS: an electronic structure analysis package for the AI era [EB/OL]. arXiv: 2501.08697, 2025 (2025-10-22)[2025-08-06]. https://arxiv.org/abs/2501.08697.
    [42]
    CHEN T, YUAN F B, LIU J C, et al. Modeling the high-pressure solid and liquid phases of tin from deep potentials with ab initio accuracy [J]. Physical Review Materials, 2023, 7(5): 053603. doi: 10.1103/PhysRevMaterials.7.053603
    [43]
    LI W, LU S, HU Q M, et al. Generalized stacking fault energies of alloys [J]. Journal of Physics: Condensed Matter, 2014, 26(26): 265005. doi: 10.1088/0953-8984/26/26/265005
    [44]
    余永宁, 杨平, 强文江, 等. 材料科学基础 [M]. 北京: 高等教育出版社, 2006.

    YU Y N, YANG P, QIANG W J, et al. Fundamentals of materials science [M]. Beijing: Higher Education Press, 2006.
    [45]
    MO P H, LI C, ZHAO D, et al. Accurate and efficient molecular dynamics based on machine learning and non von Neumann architecture [J]. NPJ Computational Materials, 2022, 8(1): 107. doi: 10.1038/s41524-022-00773-z
    [46]
    Sandia National Laboratories. LAMMPS [CP/OL]. [2025-10-02]. https://lammps. sandia. gov.
    [47]
    LI W H, HAHN E N, YAO X H, et al. Shock induced damage and fracture in SiC at elevated temperature and high strain rate [J]. Acta Materialia, 2019, 167: 51–70. doi: 10.1016/j.actamat.2018.12.035
    [48]
    STUKOWSKI A. Visualization and analysis of atomistic simulation data with OVITO—the open visualization tool [J]. Modelling and Simulation in Materials Science and Engineering, 2010, 18(1): 015012. doi: 10.1088/0965-0393/18/1/015012
    [49]
    MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980.
    [50]
    ALIPPI P, MARCUS P M, SCHEFFLER M. Strained tetragonal states and Bain paths in metals [J]. Physical Review Letters, 1997, 78(20): 3892–3895. doi: 10.1103/PhysRevLett.78.3892
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views(171) PDF downloads(12) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return