| Citation: | ZHANG Zhixuan, ZHANG Zongyao, CHANG Guorui, WANG Weili, LI Na, ZHANG Weibin. Spinodal Decomposition in (Ti, Zr)(C, N) Ceramics: Data-Driven Efficient Design and Hardness-Toughness Synergy[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110107. doi: 10.11858/gywlxb.20251134 |
| [1] |
WANG Q, DENG Y M, DAI M Y, et al. Multiphase ceramic SiBCN-ZrO2/ZrC/ZrB2/SiC with ultra-wide bandwidth electromagnetic absorption [J]. Chemical Engineering Journal, 2024, 498: 155392. doi: 10.1016/j.cej.2024.155392
|
| [2] |
CAI F Y, NI D W, BAO W C, et al. Ablation behavior and mechanisms of Cf/(Ti0.2Zr0.2Hf0.2Nb0.2Ta0.2)C-SiC high-entropy ceramic matrix composites [J]. Composites Part B: Engineering, 2022, 243: 110177. doi: 10.1016/j.compositesb.2022.110177
|
| [3] |
KONG Q Y, ZHANG R, CHEN L, et al. Phase transition of multi-component (TiZrVNb)C ceramics—part Ⅰ: phase decomposition induced by carbon content [J]. Journal of Advanced Ceramics, 2024, 13(5): 679–688. doi: 10.26599/JAC.2024.9220888
|
| [4] |
BABU R P, MA T R, HEDSTRÖM P, et al. A transmission electron microscopy study of discontinuous precipitation in the high misfit system (Ti, Zr)C [J]. Materials Today Communications, 2020, 25: 101281. doi: 10.1016/j.mtcomm.2020.101281
|
| [5] |
GILLI N, WATTS J, FAHRENHOLTZ W G, et al. Design of ultra-high temperature ceramic nano-composites from multi-scale length microstructure approach [J]. Composites Part B: Engineering, 2021, 226: 109344. doi: 10.1016/j.compositesb.2021.109344
|
| [6] |
VALLAURI D, ATÍAS ADRIAN I C, CHRYSANTHOU A. TiC-TiB2 composites: a review of phase relationships, processing and properties [J]. Journal of the European Ceramic Society, 2008, 28(8): 1697–1713. doi: 10.1016/j.jeurceramsoc.2007.11.011
|
| [7] |
WANG X G, GUO W M, KAN Y M, et al. Densification behavior and properties of hot-pressed ZrC ceramics with Zr and graphite additives [J]. Journal of the European Ceramic Society, 2011, 31(6): 1103–1111. doi: 10.1016/j.jeurceramsoc.2011.01.005
|
| [8] |
GUO Z Q, WANG K, CUI B, et al. Ultrastrong and ductile Al-Mg alloy matrix composites via composition-modulated precipitation induced by intragranular ceramic nanoparticles [J]. Composites Part B: Engineering, 2025, 291: 112012. doi: 10.1016/j.compositesb.2024.112012
|
| [9] |
LI Y, KATSUI H, GOTO T. Effect of heat treatment on the decomposition of TiC-ZrC solid solutions by spark plasma sintering [J]. Journal of the European Ceramic Society, 2016, 36(15): 3795–3800. doi: 10.1016/j.jeurceramsoc.2016.01.039
|
| [10] |
HOLLECK H. Ternäre carbidsysteme der actinoiden mit den übergangsmetallen der 4. bis 8. gruppe [J]. Journal of Nuclear Materials, 1984, 124: 129–146. doi: 10.1016/0022-3115(84)90017-5
|
| [11] |
XU L, GUO W M, ZOU J, et al. Low-temperature densification of high entropy diboride based composites with fine grains and excellent mechanical properties [J]. Composites Part B: Engineering, 2022, 247: 110331. doi: 10.1016/j.compositesb.2022.110331
|
| [12] |
TANG Y P, GOTO W, HIROSAWA S, et al. Concurrent strengthening of ultrafine-grained age-hardenable Al-Mg alloy by means of high-pressure torsion and spinodal decomposition [J]. Acta Materialia, 2017, 131: 57–64. doi: 10.1016/j.actamat.2017.04.002
|
| [13] |
XIAO X P, YI Z Y, CHEN T T, et al. Suppressing spinodal decomposition by adding Co into Cu-Ni-Si alloy [J]. Journal of Alloys and Compounds, 2016, 660: 178–183. doi: 10.1016/j.jallcom.2015.11.103
|
| [14] |
MIYAMOTO G, TATEYAMA Y, UESUGI T, et al. Solute cluster-induced precipitation and resultant surface hardening during nitriding of Fe-Al-V alloys [J]. Scripta Materialia, 2021, 203: 114121. doi: 10.1016/j.scriptamat.2021.114121
|
| [15] |
RIOS O, EBRAHIMI F. Spinodal decomposition of the γ-phase upon quenching in the Ti-Al-Nb ternary alloy system [J]. Intermetallics, 2011, 19(1): 93–98. doi: 10.1016/j.intermet.2010.09.014
|
| [16] |
XIE W J, WANG W H, LIU Y H. On the application of high-throughput experimentation and data-driven approaches in metallic glasses [J]. Materials Genome Engineering Advances, 2023, 1(1): e8. doi: 10.1002/mgea.8
|
| [17] |
HAN X Q, LIN N, LI A Q, et al. Microstructure and characterization of (Ti, V, Nb, Ta)(C, N) high-entropy ceramic [J]. Ceramics International, 2021, 47(24): 35105–35110. doi: 10.1016/j.ceramint.2021.09.053
|
| [18] |
LI R, LUO R Y, LIN N, et al. A novel strategy for fabricating (Ti, Ta, Nb, Zr, W)(C, N) high-entropy ceramic reinforced with in situ synthesized W2C particles [J]. Ceramics International, 2022, 48(21): 32540–32545. doi: 10.1016/j.ceramint.2022.07.242
|
| [19] |
WANG H Y, BI J Q, YANG Y, et al. Preparation, characterization and performance of high-entropy carbonitride ceramics [J]. Ceramics International, 2024, 50(2): 3034–3040. doi: 10.1016/j.ceramint.2023.11.051
|
| [20] |
HE L, LIU L J, PENG F, et al. Host lattice and solid solution formation in an octal-cation (NbTaZrTiHfVWMo)C high entropy carbide ceramic [J]. Journal of the European Ceramic Society, 2023, 43(14): 5792–5801. doi: 10.1016/j.jeurceramsoc.2023.06.061
|
| [21] |
ZHANG W B, CUPID D M, GOTCU P, et al. High-throughput description of infinite composition-structure-property-performance relationships of lithium-manganese oxide spinel cathodes [J]. Chemistry of Materials, 2018, 30(7): 2287–2298. doi: 10.1021/acs.chemmater.7b05068
|
| [22] |
YILDIZ A B, YIXUAN H, BABU R P, et al. Design, synthesis, structure, and stability of novel multi-principal element (Ti, Zr, Hf, W)C ceramic with a miscibility gap [J]. Journal of the European Ceramic Society, 2022, 42(11): 4429–4435. doi: 10.1016/j.jeurceramsoc.2022.04.029
|
| [23] |
ZHANG W, LI K X, CHEN L, et al. The phase decomposition in non-equimolar (ZrHfVNbMoW)Cx complex concentrated carbides via carbon content regulation [J]. Journal of the European Ceramic Society, 2024, 44(3): 1396–1403. doi: 10.1016/j.jeurceramsoc.2023.10.050
|
| [24] |
LV J S, LI W, LI T, et al. Ablation behavior of high-entropy boride (Hf-Zr-Ta-Ti)B2 coating fabricated via supersonic atmospheric plasma spraying for carbon/carbon composites [J]. Composites Part B: Engineering, 2024, 270: 111137. doi: 10.1016/j.compositesb.2023.111137
|
| [25] |
WANG Y Y, WANG J R, CAO Z L, et al. Molecular contrastive learning of representations via graph neural networks [J]. Nature Machine Intelligence, 2022, 4(3): 279–287. doi: 10.1038/s42256-022-00447-x
|
| [26] |
CHEN S, JUNG Y. A generalized-template-based graph neural network for accurate organic reactivity prediction [J]. Nature Machine Intelligence, 2022, 4(9): 772–780. doi: 10.1038/s42256-022-00526-z
|
| [27] |
RAO J H, ZHENG S J, LU Y T, et al. Quantitative evaluation of explainable graph neural networks for molecular property prediction [J]. Patterns, 2022, 3(12): 100628. doi: 10.1016/j.patter.2022.100628
|
| [28] |
KAR K, KORNBLITH S, FEDORENKO E. Interpretability of artificial neural network models in artificial intelligence versus neuroscience [J]. Nature Machine Intelligence, 2022, 4(12): 1065–1067. doi: 10.1038/s42256-022-00592-3
|
| [29] |
WU Z X, WANG J K, DU H Y, et al. Chemistry-intuitive explanation of graph neural networks for molecular property prediction with substructure masking [J]. Nature Communications, 2023, 14(1): 2585. doi: 10.1038/s41467-023-38192-3
|
| [30] |
ZHANG R Z, YUAN Y, WANG X H, et al. Machine learning-assisted rapid electromagnetic design of flexible graphene-based absorptive composites [J]. Chemical Engineering Journal, 2025, 511: 161634. doi: 10.1016/j.cej.2025.161634
|
| [31] |
WU Z X, KANG L R, HUANG T C, et al. Elevating perovskite efficiency via machine learning-assisted screening of passivators [J]. Chemical Engineering Journal, 2024, 499: 156391. doi: 10.1016/j.cej.2024.156391
|
| [32] |
SCHMIDT J, MARQUES M R G, BOTTI S, et al. Recent advances and applications of machine learning in solid-state materials science [J]. NPJ Computational Materials, 2019, 5(1): 83. doi: 10.1038/s41524-019-0221-0
|
| [33] |
JABLONKA K M, ONGARI D, MOOSAVI S M, et al. Big-data science in porous materials: materials genomics and machine learning [J]. Chemical Reviews, 2020, 120(16): 8066–8129. doi: 10.1021/acs.chemrev.0c00004
|
| [34] |
CHEN C, ZUO Y X, YE W K, et al. A critical review of machine learning of energy materials [J]. Advanced Energy Materials, 2020, 10(8): 1903242. doi: 10.1002/aenm.201903242
|
| [35] |
LIU H, FU Z P, YANG K, et al. Machine learning for glass science and engineering: a review [J]. Journal of Non-Crystalline Solids, 2021, 557: 119419. doi: 10.1016/j.jnoncrysol.2019.04.039
|
| [36] |
HART G L W, MUELLER T, TOHER C, et al. Machine learning for alloys [J]. Nature Reviews Materials, 2021, 6(8): 730–755. doi: 10.1038/s41578-021-00340-w
|
| [37] |
SHANG Y, XIONG Z Y, AN K, et al. Materials genome engineering accelerates the research and development of organic and perovskite photovoltaics [J]. Materials Genome Engineering Advances, 2024, 2(1): e28. doi: 10.1002/mgea.28
|
| [38] |
JIN X Z, LUO H, WANG X F, et al. Data mining accelerated the design strategy of high-entropy alloys with the largest hardness based on genetic algorithm optimization [J]. Materials Genome Engineering Advances, 2024, 2(2): e49. doi: 10.1002/mgea.49
|
| [39] |
WANG W H, MINAMI T, SHENG Y X, et al. Intelligent quantitative recognition of SARS-CoV-2 using machine learning-based ratiometric fluorescent paper sensors of metal-organic framework Al3+/Au NCs@ZIF-90 [J]. Chemical Engineering Journal, 2025, 506: 159933. doi: 10.1016/j.cej.2025.159933
|
| [40] |
WAN Y, WEI Q, SUN H, et al. Machine learning assisted biomimetic flexible SERS sensor from seashells for pesticide classification and concentration prediction [J]. Chemical Engineering Journal, 2025, 507: 160813. doi: 10.1016/j.cej.2025.160813
|
| [41] |
QIU X R, LI H, VER STEEG G, et al. Advances in AI for protein structure prediction: implications for cancer drug discovery and development [J]. Biomolecules, 2024, 14(3): 339. doi: 10.3390/biom14030339
|
| [42] |
CHANDRA A, TÜNNERMANN L, LÖFSTEDT T, et al. Transformer-based deep learning for predicting protein properties in the life sciences [J]. eLife, 2023, 12: e82819. doi: 10.7554/eLife.82819
|
| [43] |
PAKHRIN S C, SHRESTHA B, ADHIKARI B, et al. Deep learning-based advances in protein structure prediction [J]. International Journal of Molecular Sciences, 2021, 22(11): 5553. doi: 10.3390/ijms22115553
|
| [44] |
CHEN L L, LI C H, XU K, et al. Data-driven prediction of phase formation in graphene-metal systems based on phase diagram insights [J]. Materials Genome Engineering Advances, 2025, 3(1): e81. doi: 10.1002/MGEA.81
|
| [45] |
LIU M Q, HU H Y, CUI Y J, et al. Modeling and analysis of droplet generation in microchannels using interpretable machine learning methods [J]. Chemical Engineering Journal, 2025, 511: 161972. doi: 10.1016/j.cej.2025.161972
|
| [46] |
PENG Y B, DU Y, ZHOU P, et al. CSUTDCC1—a thermodynamic database for multicomponent cemented carbides [J]. International Journal of Refractory Metals and Hard Materials, 2014, 42: 57–70. doi: 10.1016/j.ijrmhm.2013.10.005
|
| [47] |
LUKAS H L, FRIES S G, SUNDMAN B. Computational thermodynamics: the Calphad method [M]. Cambridge: Cambridge University Press, 2007.
|
| [48] |
SUNDMAN B, JANSSON B, ANDERSSON J O. The Thermo-Calc databank system [J]. Calphad, 1985, 9(2): 153–190. doi: 10.1016/0364-5916(85)90021-5
|
| [49] |
POPE C G. X-ray diffraction and the Bragg equation [J]. Journal of Chemical Education, 1997, 74(1): 129. doi: 10.1021/ed074p129
|
| [50] |
KONG Q Y, CHEN L, HUO S J, et al. Phase transition of multi-component (TiZrVNb)C ceramics—part Ⅱ: from single phase to multiple phases via adjusting V content [J]. Journal of Advanced Ceramics, 2024, 13(5): 689–698. doi: 10.26599/JAC.2024.9220889
|
| [51] |
KIM H I, KIM T W, KIM Y O, et al. Age-hardenability and related microstructural changes during and after phase transformation in an Au-Ag-Cu-based dental alloy [J]. Materials Research, 2013, 16(1): 71–78. doi: 10.1590/S1516-14392012005000169
|
| [52] |
ZHANG Z, ZHANG Z, CHANG G, et al. Nitrogen-induced stacking fault energy reduction enables spinodal-decomposition-driven toughening in (Ti, Zr)C ceramics [J]. Journal of Advanced Ceramics, 2025.
|
| [53] |
TAN S T, WANG R K, SONG G K, et al. Machine learning and shapley additive explanation-based interpretable prediction of the electrocatalytic performance of N-doped carbon materials [J]. Fuel, 2024, 355: 129469. doi: 10.1016/j.fuel.2023.129469
|
| [54] |
KRZYWINSKI M, ALTMAN N. Classification and regression trees [J]. Nature Methods, 2017, 14(8): 757–758. doi: 10.1038/nmeth.4370
|
| [55] |
ANTONIADIS A, LAMBERT-LACROIX S, POGGI J M. Random forests for global sensitivity analysis: a selective review [J]. Reliability Engineering & System Safety, 2021, 206: 107312. doi: 10.1016/j.ress.2020.107312
|
| [56] |
SIGRIST F. Gradient and Newton boosting for classification and regression [J]. Expert Systems with Applications, 2021, 167: 114080. doi: 10.1016/j.eswa.2020.114080
|
| [57] |
CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco: ACM, 2016: 785–794.
|
| [58] |
PROKHORENKOVA L, GUSEV G, VOROBEV A, et al. CatBoost: unbiased boosting with categorical features [C]//Proceedings of the 32nd International Conference on Neural Information Processing Systems. Montréal: Curran Associates Inc., 2018: 6639−6649.
|
| [59] |
ZHANG P. An optimized AdaBoost algorithm based on k-means clustering [J]. Journal of Physics: Conference Series, 2021, 1856(1): 012021. doi: 10.1088/1742-6596/1856/1/012021
|
| [60] |
NATEKIN A, KNOLL A. Gradient boosting machines, a tutorial [J]. Frontiers in Neurorobotics, 2013, 7: 21. doi: 10.3389/fnbot.2013.00021
|
| [61] |
JEON J, SEO N, SON S B, et al. Application of machine learning algorithms and SHAP for prediction and feature analysis of tempered martensite hardness in low-alloy steels [J]. Metals, 2021, 11(8): 1159. doi: 10.3390/met11081159
|