| Citation: | LI Jun, SONG Jiahe, JI Wei, LIU Lisheng. Dynamical Mechanical Behaviors and Enhanced Ductility Mechanisms of Boron Carbide Based on Deep Potential Molecular Dynamics Simulations[J]. Chinese Journal of High Pressure Physics, 2025, 39(11): 110102. doi: 10.11858/gywlxb.20251129 |
| [1] |
DOMNICH V, REYNAUD S, HABER R A, et al. Boron carbide: structure, properties, and stability under stress [J]. Journal of the American Ceramic Society, 2011, 94(11): 3605–3628. doi: 10.1111/j.1551-2916.2011.04865.x
|
| [2] |
THÉVENOT F. Boron carbide—a comprehensive review [J]. Journal of the European Ceramic Society, 1990, 6(4): 205–225. doi: 10.1016/0955-2219(90)90048-K
|
| [3] |
AN Q, GODDARD III W A, CHENG T. Atomistic explanation of shear-induced amorphous band formation in boron carbide [J]. Physical Review Letters, 2014, 113(9): 095501. doi: 10.1103/PhysRevLett.113.095501
|
| [4] |
AN Q, GODDARD III W A. Atomistic origin of brittle failure of boron carbide from large-scale reactive dynamics simulations: suggestions toward improved ductility [J]. Physical Review Letters, 2015, 115(10): 105501. doi: 10.1103/PhysRevLett.115.105501
|
| [5] |
MAURI F, VAST N, PICKARD C J. Atomic structure of icosahedral B4C boron carbide from a first principles analysis of NMR spectra [J]. Physical Review Letters, 2001, 87(8): 085506. doi: 10.1103/PhysRevLett.87.085506
|
| [6] |
LAZZARI R, VAST N, BESSON J M, et al. Atomic structure and vibrational properties of icosahedral B4C boron carbide [J]. Physical Review Letters, 1999, 83(16): 3230–3233. doi: 10.1103/PhysRevLett.83.3230
|
| [7] |
ZHANG Y, MASHIMO T, UEMURA Y, et al. Shock compression behaviors of boron carbide (B4C) [J]. Journal of Applied Physics, 2006, 100(11): 113536. doi: 10.1063/1.2399334
|
| [8] |
VOGLER T J, REINHART W D, CHHABILDAS L C. Dynamic behavior of boron carbide [J]. Journal of Applied Physics, 2004, 95(8): 4173–4183. doi: 10.1063/1.1686902
|
| [9] |
CHEN M W, MCCAULEY J W, HEMKER K J. Shock-induced localized amorphization in boron carbide [J]. Science, 2003, 299(5612): 1563–1566. doi: 10.1126/science.1080819
|
| [10] |
GHOSH D, SUBHASH G, SUDARSHAN T S, et al. Dynamic indentation response of fine-grained boron carbide [J]. Journal of the American Ceramic Society, 2007, 90(6): 1850–1857. doi: 10.1111/j.1551-2916.2007.01652.x
|
| [11] |
GE D, DOMNICH V, JULIANO T, et al. Structural damage in boron carbide under contact loading [J]. Acta Materialia, 2004, 52(13): 3921–3927. doi: 10.1016/j.actamat.2004.05.007
|
| [12] |
CHEN M W, MCCAULEY J W. Mechanical scratching induced phase transitions and reactions of boron carbide [J]. Journal of Applied Physics, 2006, 100(12): 123517. doi: 10.1063/1.2405742
|
| [13] |
ZHAO S T, KAD B, REMINGTON B A, et al. Directional amorphization of boron carbide subjected to laser shock compression [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12088–12093. doi: 10.1073/pnas.1604613113
|
| [14] |
AN Q, GODDARD III W A, XIE K Y, et al. Superstrength through nanotwinning [J]. Nano Letters, 2016, 16(12): 7573–7579. doi: 10.1021/acs.nanolett.6b03414
|
| [15] |
AN Q, GODDARD III W A. Nanotwins soften boron-rich boron carbide (B13C2) [J]. Applied Physics Letters, 2017, 110(11): 111902. doi: 10.1063/1.4978644
|
| [16] |
AN Q, GODDARD III W A. Microalloying boron carbide with silicon to achieve dramatically improved ductility [J]. The Journal of Physical Chemistry Letters, 2014, 5(23): 4169–4174. doi: 10.1021/jz5022697
|
| [17] |
XIANG S S, MA L N, YANG B, et al. Tuning the deformation mechanisms of boron carbide via silicon doping [J]. Science Advances, 2019, 5(10): eaay0352. doi: 10.1126/sciadv.aay0352
|
| [18] |
NIKZAD L, ORRÙ R, LICHERI R, et al. Fabrication and formation mechanism of B4C-TiB2 composite by reactive spark plasma sintering using unmilled and mechanically activated reactants [J]. Journal of the American Ceramic Society, 2012, 95(11): 3463–3471. doi: 10.1111/j.1551-2916.2012.05416.x
|
| [19] |
ITOH H, MAEKAWA I, IWAHARA H. Microstructure and mechanical properties of B6O-B4C sintered composites prepared under high pressure [J]. Journal of Materials Science, 2000, 35(3): 693–698. doi: 10.1023/A:1004753116816
|
| [20] |
TANG B, HE Y, GODDARD III W A, et al. First principles predicting enhanced ductility of boride carbide through magnesium microalloying [J]. Journal of the American Ceramic Society, 2019, 102(9): 5514–5523. doi: 10.1111/jace.16383
|
| [21] |
XU H Y, JI W, JIANG J W, et al. Contribution of boundary non-stoichiometry to the lower-temperature plasticity in high-pressure sintered boron carbide [J]. Nature Communications, 2023, 14(1): 4889. doi: 10.1038/s41467-023-40581-7
|
| [22] |
CHENG C, REDDY K M, HIRATA A, et al. Structure and mechanical properties of boron-rich boron carbides [J]. Journal of the European Ceramic Society, 2017, 37(15): 4514–4523. doi: 10.1016/j.jeurceramsoc.2017.06.017
|
| [23] |
CHAUHAN A, SCHAEFER M C, HABER R A, et al. Experimental observations of amorphization in stoichiometric and boron-rich boron carbide [J]. Acta Materialia, 2019, 181: 207–215. doi: 10.1016/j.actamat.2019.09.052
|
| [24] |
XIE K Y, DOMNICH V, FARBANIEC L, et al. Microstructural characterization of boron-rich boron carbide [J]. Acta Materialia, 2017, 136: 202–214. doi: 10.1016/j.actamat.2017.06.063
|
| [25] |
LI J, AN Q, LIU L S. Local amorphization in boron carbide at finite temperature: strategies toward improved ductility [J]. Physical Review B, 2021, 104(13): 134105. doi: 10.1103/PhysRevB.104.134105
|
| [26] |
MATOVIĆ B, MALETAŠKIĆ J, PRIKHNA T, et al. Characterization of B4C-SiC ceramic composites prepared by ultra-high pressure sintering [J]. Journal of the European Ceramic Society, 2021, 41(9): 4755–4760. doi: 10.1016/j.jeurceramsoc.2021.03.047
|
| [27] |
GUO W M, ZHANG Z L, LI J X, et al. Improvement of densification and mechanical properties of Al2O3-B4C ceramics [J]. Ceramics International, 2016, 42(9): 11486–11489. doi: 10.1016/j.ceramint.2016.04.025
|
| [28] |
WANG B, CAI D L, WANG H Y, et al. Microstructures and mechanical properties of B4C-SiC and B4C-SiC-TiB2 ceramic composites fabricated by hot pressing [J]. Journal of the American Ceramic Society, 2023, 106(8): 5046–5066. doi: 10.1111/jace.19136
|
| [29] |
MARVEL C J, BEHLER K D, LASALVIA J C, et al. Grain boundary segregation in Si-doped B-based ceramics and its effect on grain boundary cohesion [J]. Acta Materialia, 2022, 227: 117684. doi: 10.1016/j.actamat.2022.117684
|
| [30] |
SHEN Y D, YANG M Y, GODDARD III W A, et al. Strengthening boron carbide by doping Si into grain boundaries [J]. Journal of the American Ceramic Society, 2022, 105(5): 2978–2989. doi: 10.1111/jace.18028
|
| [31] |
LI P H, LI J, FENG Q L, et al. Unveiling high ductility in boron carbide crystal at room temperature [J]. Science Advances, 2025, 11(15): eadr4648. doi: 10.1126/sciadv.adr4648
|
| [32] |
蒋招绣, 高光发. 碳化硼陶瓷的力学特性和破坏行为研究进展 [J]. 材料导报, 2020, 34(12): 23064–23073. doi: 10.11896/cldb.19090221
JIANG Z X, GAO G F. Research progress on mechanical properties and failure behavior of boron carbide ceramics [J]. Materials Reports, 2020, 34(12): 23064–23073. doi: 10.11896/cldb.19090221
|
| [33] |
TIAN X, CUI J Z, YANG M, et al. Molecular dynamics simulations on shock response and spalling behaviors of semi-coherent {111} Cu-Al multilayers [J]. International Journal of Mechanical Sciences, 2020, 172: 105414. doi: 10.1016/j.ijmecsci.2019.105414
|
| [34] |
LI W H, HAHN E N, YAO X H, et al. On the grain size dependence of shock responses in nanocrystalline SiC ceramics at high strain rates [J]. Acta Materialia, 2020, 200: 632–651. doi: 10.1016/j.actamat.2020.09.044
|
| [35] |
SHAO J L, WANG C, WANG P, et al. Atomistic simulations and modeling analysis on the spall damage in lead induced by decaying shock [J]. Mechanics of Materials, 2019, 131: 78–83. doi: 10.1016/j.mechmat.2019.01.012
|
| [36] |
蔡洋, 李超, 卢磊. 冲击载荷下金属材料的微结构-加载特性-层裂响应关系概述 [J]. 高压物理学报, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648
CAI Y, LI C, LU L. Effects of microstructure and loading characteristics on spallation of metallic materials under shock loading [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040104. doi: 10.11858/gywlxb.20200648
|
| [37] |
李旺辉, 奉兰西, 张晓晴, 等. 极端条件下碳化硅的变形、损伤与破坏研究进展 [J]. 高压物理学报, 2021, 35(4): 040103. doi: 10.11858/gywlxb.20210783
LI W H, FENG L X, ZHANG X Q, et al. Brief review of research progress on the deformation, damage and failure of silicon carbide under extreme conditions [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040103. doi: 10.11858/gywlxb.20210783
|
| [38] |
王嘉楠, 伍鲍, 何安民, 等. 强冲击下金属材料动态损伤与破坏的分子动力学模拟研究进展 [J]. 高压物理学报, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747
WANG J N, WU B, HE A M, et al. Research progress on dynamic damage and failure of metal materials under shock loading with molecular dynamics simulation [J]. Chinese Journal of High Pressure Physics, 2021, 35(4): 040101. doi: 10.11858/gywlxb.20210747
|
| [39] |
CHEENADY A A, AWASTHI A, DEVRIES M, et al. Shock response of single-crystal boron carbide along orientations with the highest and lowest elastic moduli [J]. Physical Review B, 2021, 104(18): 184110. doi: 10.1103/PhysRevB.104.184110
|
| [40] |
BLANK T B, BROWN S D, CALHOUN A W, et al. Neural network models of potential energy surfaces [J]. The Journal of Chemical Physics, 1995, 103(10): 4129–4137. doi: 10.1063/1.469597
|
| [41] |
BUTLER K T, DAVIES D W, CARTWRIGHT H, et al. Machine learning for molecular and materials science [J]. Nature, 2018, 559(7715): 547–555. doi: 10.1038/s41586-018-0337-2
|
| [42] |
HANSEN K, BIEGLER F, RAMAKRISHNAN R, et al. Machine learning predictions of molecular properties: accurate many-body potentials and nonlocality in chemical space [J]. The Journal of Physical Chemistry Letters, 2015, 6(12): 2326–2331. doi: 10.1021/acs.jpclett.5b00831
|
| [43] |
DRAGONI D, DAFF T D, CSÁNYI G, et al. Achieving DFT accuracy with a machine-learning interatomic potential: thermomechanics and defects in bcc ferromagnetic iron [J]. Physical Review Materials, 2018, 2(1): 013808. doi: 10.1103/PhysRevMaterials.2.013808
|
| [44] |
BEHLER J, PARRINELLO M. Generalized neural-network representation of high-dimensional potential-energy surfaces [J]. Physical Review Letters, 2007, 98(14): 146401. doi: 10.1103/PhysRevLett.98.146401
|
| [45] |
ZHANG L F, HAN J Q, WANG H, et al. Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics [J]. Physical Review Letters, 2018, 120(14): 143001. doi: 10.1103/PhysRevLett.120.143001
|
| [46] |
HAN J Q, ZHANG L F, CAR R, et al. Deep potential: a general representation of a many-body potential energy surface [J]. Communications in Computational Physics, 2018, 23(3): 629–639. doi: 10.4208/cicp.OA-2017-0213
|
| [47] |
WANG H, ZHANG L F, HAN J Q, et al. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics [J]. Computer Physics Communications, 2018, 228: 178–184. doi: 10.1016/j.cpc.2018.03.016
|
| [48] |
SCHÜTT K T, SAUCEDA H E, KINDERMANS P J, et al. SchNet—a deep learning architecture for molecules and materials [J]. The Journal of Chemical Physics, 2018, 148(24): 241722. doi: 10.1063/1.5019779
|
| [49] |
SCHÜTT K T, KESSEL P, GASTEGGER M, et al. SchNetPack: a deep learning toolbox for atomistic systems [J]. Journal of Chemical Theory and Computation, 2019, 15(1): 448–455. doi: 10.1021/acs.jctc.8b00908
|
| [50] |
BARTÓK A P, PAYNE M C, KONDOR R, et al. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons [J]. Physical Review Letters, 2010, 104(13): 136403. doi: 10.1103/PhysRevLett.104.136403
|
| [51] |
CHMIELA S, TKATCHENKO A, SAUCEDA H E, et al. Machine learning of accurate energy-conserving molecular force fields [J]. Science Advances, 2017, 3(5): e1603015. doi: 10.1126/sciadv.1603015
|
| [52] |
LI J, AN Q. Shear-induced amorphization in boron subphosphide (B12P2): direct transition versus stacking fault mediation [J]. Journal of the American Ceramic Society, 2022, 105(11): 6826–6838. doi: 10.1111/jace.18629
|
| [53] |
LI J, LUO K, AN Q. Mobile dislocation mediated Hall-Petch and inverse Hall-Petch behaviors in nanocrystalline Al-doped boron carbide [J]. Journal of the European Ceramic Society, 2024, 44(2): 659–667. doi: 10.1016/j.jeurceramsoc.2023.09.079
|
| [54] |
LI J, LUO K, AN Q. Atomic structure, stability, and dissociation of dislocations in cadmium telluride [J]. International Journal of Plasticity, 2023, 163: 103552. doi: 10.1016/j.ijplas.2023.103552
|
| [55] |
LI J, LUO K, AN Q. Temperature-dependent competition between dislocation motion and phase transition in CdTe [J]. Journal of Materials Science & Technology, 2025, 226: 109–121. doi: 10.1016/j.jmst.2024.11.046
|
| [56] |
LI J, LUO K, AN Q. Unraveling the Hall-Petch to inverse Hall-Petch transition in nanocrystalline CdTe [J]. International Journal of Mechanical Sciences, 2025, 286: 109852. doi: 10.1016/j.ijmecsci.2024.109852
|
| [57] |
YUAN J F, LIU J Z, ZHANG L Q, et al. Combustion and agglomeration characteristics of boron particles in boron-containing fuel-rich propellant [J]. Combustion and Flame, 2021, 232: 111551. doi: 10.1016/j.combustflame.2021.111551
|
| [58] |
DANIELS C L, LIU D J, ADAMSON M A S, et al. Azo (xy) vs. aniline selectivity in catalytic nitroarene reduction by intermetallics: experiments and simulations [J]. The Journal of Physical Chemistry C, 2021, 125(44): 24440–24450. doi: 10.1021/acs.jpcc.1c08569
|
| [59] |
HAN Y Q, WANG Z L, CHEN A, et al. An inductive transfer learning force field (ITLFF) protocol builds protein force fields in seconds [J]. Briefings in Bioinformatics, 2022, 23(2): bbab590. doi: 10.1093/bib/bbab590
|
| [60] |
WANG Z L, HAN Y Q, LI J J, et al. Combining the fragmentation approach and neural network potential energy surfaces of fragments for accurate calculation of protein energy [J]. The Journal of Physical Chemistry B, 2020, 124(15): 3027–3035. doi: 10.1021/acs.jpcb.0c01370
|
| [61] |
JIANG J, YU Y, MEI Z, et al. Thermal decomposition and shock response mechanism of DNTF: deep potential molecular dynamics simulations [J]. Energy, 2024, 313: 133799. doi: 10.1016/j.energy.2024.133799
|
| [62] |
ZHANG J D, GUO W, YAO Y G. Deep potential molecular dynamics study of Chapman-Jouguet detonation events of energetic materials [J]. The Journal of Physical Chemistry Letters, 2023, 14(32): 7141–7148. doi: 10.1021/acs.jpclett.3c01392
|
| [63] |
WANG C M, ZHANG J D, GUO W, et al. Detonation performance and shock sensitivity of energetic material NTO with embedded small molecules: a deep neural network potential accelerated molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2024, 26(39): 25543–25556. doi: 10.1039/D4CP02399D
|
| [64] |
MONDAL A, KUSSAINOVA D, YUE S W, et al. Modeling chemical reactions in alkali carbonate-hydroxide electrolytes with deep learning potentials [J]. Journal of Chemical Theory and Computation, 2023, 19(14): 4584–4595. doi: 10.1021/acs.jctc.2c00816
|
| [65] |
LE J B, YANG X H, ZHUANG Y B, et al. Recent progress toward ab initio modeling of electrocatalysis [J]. The Journal of Physical Chemistry Letters, 2021, 12(37): 8924–8931. doi: 10.1021/acs.jpclett.1c02086
|
| [66] |
LU D H, WANG H, CHEN M H, et al. 86 PFLOPS deep potential molecular dynamics simulation of 100 million atoms with ab initio accuracy [J]. Computer Physics Communications, 2021, 259: 107624. doi: 10.1016/j.cpc.2020.107624
|
| [67] |
ZHANG Y Z, WANG H D, CHEN W J, et al. DP-GEN : a concurrent learning platform for the generation of reliable deep learning based potential energy models [J]. Computer Physics Communications, 2020, 253: 107206. doi: 10.1016/j.cpc.2020.107206
|
| [68] |
BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
|
| [69] |
KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
|
| [70] |
KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/PhysRevB.54.11169
|
| [71] |
GIANNOZZI P, BARONI S, BONINI N, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J]. Journal of Physics: Condensed Matter, 2009, 21(39): 395502. doi: 10.1088/0953-8984/21/39/395502
|
| [72] |
VANDEVONDELE J, KRACK M, MOHAMED F, et al. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach [J]. Computer Physics Communications, 2005, 167(2): 103–128. doi: 10.1016/j.cpc.2004.12.014
|
| [73] |
PERDEW J P, SCHMIDT K. Jacob’s ladder of density functional approximations for the exchange-correlation energy [J]. AIP Conference Proceedings, 2001, 577(1): 1–20. doi: 10.1063/1.1390175
|
| [74] |
DISTASIO JR R A, SANTRA B, LI Z F, et al. The individual and collective effects of exact exchange and dispersion interactions on the ab initio structure of liquid water [J]. The Journal of Chemical Physics, 2014, 141(8): 084502. doi: 10.1063/1.4893377
|
| [75] |
THOMPSON A P, AKTULGA H M, BERGER R, et al. LAMMPS—a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales [J]. Computer Physics Communications, 2022, 271: 108171. doi: 10.1016/j.cpc.2021.108171
|
| [76] |
HJORTH LARSEN A, JØRGEN MORTENSEN J, BLOMQVIST J, et al. The atomic simulation environment—a Python library for working with atoms [J]. Journal of Physics: Condensed Matter, 2017, 29(27): 273002. doi: 10.1088/1361-648X/aa680e
|
| [77] |
CERIOTTI M, MORE J, MANOLOPOULOS D E. i-PI: a Python interface for ab initio path integral molecular dynamics simulations [J]. Computer Physics Communications, 2014, 185(3): 1019–1026. doi: 10.1016/j.cpc.2013.10.027
|
| [78] |
ABRAHAM M J, MURTOLA T, SCHULZ R, et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers [J]. SoftwareX, 2015, 1/2: 19−25.
|
| [79] |
LI J, AN Q. Nanotwinning-induced pseudoplastic deformation in boron carbide under low temperature [J]. International Journal of Mechanical Sciences, 2023, 242: 107998. doi: 10.1016/j.ijmecsci.2022.107998
|
| [80] |
LI J, LUO K, AN Q. Activating mobile dislocation in boron carbide at room temperature via Al doping [J]. Physical Review Letters, 2023, 130(11): 116104. doi: 10.1103/PhysRevLett.130.116104
|
| [81] |
LI J, AN Q. Quasiplastic deformation in shocked nanocrystalline boron carbide: grain boundary sliding and local amorphization [J]. Journal of the European Ceramic Society, 2023, 43(2): 208–216. doi: 10.1016/j.jeurceramsoc.2022.10.014
|
| [82] |
GUO D Z, AN Q. Transgranular amorphous shear band formation in polycrystalline boron carbide [J]. International Journal of Plasticity, 2019, 121: 218–226. doi: 10.1016/j.ijplas.2019.06.004
|
| [83] |
AWASTHI A, SUBHASH G. Deformation behavior and amorphization in icosahedral boron-rich ceramics [J]. Progress in Materials Science, 2020, 112: 100664. doi: 10.1016/j.pmatsci.2020.100664
|
| [84] |
YAN X Q, LI W J, GOTO T, et al. Raman spectroscopy of pressure-induced amorphous boron carbide [J]. Applied Physics Letters, 2006, 88(13): 131905. doi: 10.1063/1.2189826
|
| [85] |
REDDY K M, LIU P, HIRATA A, et al. Atomic structure of amorphous shear bands in boron carbide [J]. Nature Communications, 2013, 4: 2483. doi: 10.1038/ncomms3483
|
| [86] |
XIE K Y, AN Q, SATO T, et al. Breaking the icosahedra in boron carbide [J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(43): 12012–12016. doi: 10.1073/pnas.1607980113
|
| [87] |
AN Q. Mitigating amorphization in superhard boron carbide by microalloying-induced stacking fault formation [J]. Physical Review Materials, 2021, 5(10): 103602. doi: 10.1103/PhysRevMaterials.5.103602
|
| [88] |
SHEN Y Q, FULLER J, AN Q. Mitigating the formation of amorphous shear band in boron carbide [J]. Journal of Applied Physics, 2021, 129(14): 140902. doi: 10.1063/5.0044526
|
| [89] |
AN Q, GODDARD III W A. Boron suboxide and boron subphosphide crystals: hard ceramics that shear without brittle failure [J]. Chemistry of Materials, 2015, 27(8): 2855–2860. doi: 10.1021/cm5046918
|
| [90] |
AN Q, GODDARD III W A. Ductility in crystalline boron subphosphide (B12P2) for large strain indentation [J]. The Journal of Physical Chemistry C, 2017, 121(30): 16644–16649. doi: 10.1021/acs.jpcc.7b05429
|
| [91] |
YANG Q D, MARVEL C J, SHEN Y D, et al. Activating dislocation mediated plasticity in boron carbide through Al-doping [J]. Acta Materialia, 2022, 241: 118412. doi: 10.1016/j.actamat.2022.118412
|
| [92] |
ADASCH V, SCHROEDER M, KOTZOTT D, et al. Synthesis, crystal structure, and properties of MgxB50C8 or Mgx(B12)4(CBC)2(C2)2 (x = 2.4−4) [J]. Journal of the American Chemical Society, 2010, 132(39): 13723–13732. doi: 10.1021/ja102659d
|
| [93] |
VOJTEER N, HILLEBRECHT H. Li2B12C2 und LiB13C2: farblose borreiche Boridcarbide des Lithiums [J]. Angewandte Chemie, 2006, 118(1): 172–175. doi: 10.1002/ange.200502325
|
| [94] |
YUAN Z K, HU W T, YU D L. High-pressure synthesis, crystal structure, and physical properties of NaB13C2 single crystals [J]. Journal of Alloys and Compounds, 2022, 893: 162320. doi: 10.1016/j.jallcom.2021.162320
|
| [95] |
CHEN M W, MCCAULEY J W, LASALVIA J C, et al. Microstructural characterization of commercial hot-pressed boron carbide ceramics [J]. Journal of the American Ceramic Society, 2005, 88(7): 1935–1942. doi: 10.1111/j.1551-2916.2005.00346.x
|
| [96] |
YANG X K, COLEMAN S P, LASALVIA J C, et al. Shear-induced brittle failure along grain boundaries in boron carbide [J]. ACS Applied Materials & Interfaces, 2018, 10(5): 5072–5080. doi: 10.1021/acsami.7b16782
|
| [97] |
WOLLMERSHAUSER J A, FEIGELSON B N, GORZKOWSKI E P, et al. An extended hardness limit in bulk nanoceramics [J]. Acta Materialia, 2014, 69: 9–16. doi: 10.1016/j.actamat.2014.01.030
|
| [98] |
LIAO F, GIRSHICK S L, MOOK W M, et al. Superhard nanocrystalline silicon carbide films [J]. Applied Physics Letters, 2005, 86(17): 171913. doi: 10.1063/1.1920434
|
| [99] |
GUO D Z, SONG S X, LUO R C, et al. Grain boundary sliding and amorphization are responsible for the reverse Hall-Petch relation in superhard nanocrystalline boron carbide [J]. Physical Review Letters, 2018, 121(14): 145504. doi: 10.1103/PhysRevLett.121.145504
|
| [100] |
MASHHADI M, TAHERI-NASSAJ E, SGLAVO V M. Pressureless sintering of boron carbide [J]. Ceramics International, 2010, 36(1): 151–159. doi: 10.1016/j.ceramint.2009.07.034
|
| [101] |
MANOHAR G, PANDEY K M, RANJAN MAITY S. Effect of compaction pressure on mechanical properties of AA7075/B4C/graphite hybrid composite fabricated by powder metallurgy techniques [J]. Materials Today: Proceedings, 2021, 38: 2157–2161. doi: 10.1016/j.matpr.2020.05.194
|
| [102] |
LI B, SUN H, CHEN C F. Extreme mechanics of probing the ultimate strength of nanotwinned diamond [J]. Physical Review Letters, 2016, 117(11): 116103. doi: 10.1103/PhysRevLett.117.116103
|
| [103] |
TIAN Y J, XU B, YU D L, et al. Ultrahard nanotwinned cubic boron nitride [J]. Nature, 2013, 493(7432): 385–388. doi: 10.1038/nature11728
|
| [104] |
HUANG Q, YU D L, XU B, et al. Nanotwinned diamond with unprecedented hardness and stability [J]. Nature, 2014, 510(7504): 250–253. doi: 10.1038/nature13381
|
| [105] |
LI B, SUN H, CHEN C F. Large indentation strain-stiffening in nanotwinned cubic boron nitride [J]. Nature Communications, 2014, 5: 4965. doi: 10.1038/ncomms5965
|
| [106] |
LI P H, BU Y Q, WANG L Y, et al. In situ observation of fracture along twin boundaries in boron carbide [J]. Advanced Materials, 2023, 35(50): 2204375. doi: 10.1002/adma.202204375
|