Volume 40 Issue 3
Feb 2026
Turn off MathJax
Article Contents
YE Zi, ZHOU Xuefeng, XU Jianing, ZHOU Chenglin, YANG Yi, ZHENG Linpeng, CHEN Bin. High-Pressure Preparation of High-Strength Wood Materials[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127
Citation: YE Zi, ZHOU Xuefeng, XU Jianing, ZHOU Chenglin, YANG Yi, ZHENG Linpeng, CHEN Bin. High-Pressure Preparation of High-Strength Wood Materials[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127

High-Pressure Preparation of High-Strength Wood Materials

doi: 10.11858/gywlxb.20251127
  • Received Date: 08 Jul 2025
  • Rev Recd Date: 02 Aug 2025
  • Available Online: 08 Aug 2025
  • Issue Publish Date: 05 Feb 2026
  • Mineral resources on Earth are finite, but wood is renewable. Therefore, replacing limited industrial materials with modified wood remains a long-term pursuit. This study processed samples of three wood types, including balsa (Ochroma lagopus), basswood (Tilia tuan), and African blackwood (Dalbergia melanoxylon), with a large volume cubic press to compress these samples at room temperature under high pressure. The effects of high-pressure treatment on the air dry density, compressive strength, and elastic modulus of the three wood species were analyzed, and changes in their internal microstructures were observed using CT and scanning electron microscope. The results showed that the physical and mechanical properties of all three wood species improved. After high-pressure processing at 5.50 GPa, the density of balsa, basswood, and African blackwood increased by 239%, 112%, and 11%, respectively. Additionally, the surface hardness increased by 79%, 46%, and 15%, respectively, and the compressive strength increased by 33%, 9%, and 28%, respectively. Notably, the specific strength of compressed African blackwood (101.55 kJ/kg) approaches that of aluminum alloys (109.23 kJ/kg). The results demonstrate that African blackwood is lighter than ceramic materials. Furthermore, this wood offers superior electrical insulation and thermal insulation compared to aluminum alloy. Crucially, African blackwood possesses high specific strength, and this property gives it significant potential to replace aluminum alloy in numerous special environments. Such application supports sustainable development for future industries. In conclusion, this research opens new possibilities for high-value wood applications.

     

  • loading
  • [1]
    吴义强. 木材科学与技术研究新进展 [J]. 中南林业科技大学学报, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001

    WU Y Q. Newly advances in wood science and technology [J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001
    [2]
    ZHU Y M, ZHANG J, ZHANG Y, et al. Editorial: design and mechanical failure of deep-sea pressure structures [J]. Frontiers in Materials, 2023, 10: 1292283. doi: 10.3389/fmats.2023.1292283
    [3]
    MACDONALD A. High-pressure equipment for use in the laboratory, at sea and at depth [M]//MACDONALD A. Life at High Pressure: In the Deep Sea and Other Environments. Cham: Springer, 2021: 353–417.
    [4]
    AMAN Z, WEIXING Z, SHIPING W, et al. Dynamic response of the non-contact underwater explosions on naval equipment [J]. Marine Structures, 2011, 24(4): 396–411. doi: 10.1016/j.marstruc.2011.05.005
    [5]
    GUO X S, FAN N, LIU Y H, et al. Deep seabed mining: frontiers in engineering geology and environment [J]. International Journal of Coal Science & Technology, 2023, 10(1): 23. doi: 10.1007/s40789-023-00580-x
    [6]
    涂登云, 陈川富, 周桥芳, 等. 木材压缩改性技术研究进展 [J]. 林业工程学报, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036

    TU D Y, CHEN C F, ZHOU Q F, et al. Research progress of thermo-mechanical compression techniques for wood products [J]. Journal of Forestry Engineering, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036
    [7]
    NAVI P, PIZZI A. Property changes in thermo-hydro-mechanical processing: COST action FP0904 2010–2014: thermo-hydro-mechanical wood behavior and processing [J]. Holzforschung, 2015, 69(7): 863–873. doi: 10.1515/hf-2014-0198
    [8]
    SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material [J]. Nature, 2018, 554(7691): 224–228. doi: 10.1038/nature25476
    [9]
    HUANG W Z, JIN Y X, GUO Y, et al. Fabrication of high-performance densified wood via high-pressure steam treatment and hot-pressing [J]. Polymers, 2024, 16(7): 939. doi: 10.3390/polym16070939
    [10]
    LI H H, ZHANG F M, RAMASWAMY H S, et al. High-pressure treatment of Chinese fir wood: effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability [J]. BioResources, 2016, 11(4): 10497–10510. doi: 10.15376/biores.11.4.10497-10510
    [11]
    YU Y, ZHANG F M, ZHU S M, et al. Effects of high-pressure treatment on poplar wood: density profile, mechanical properties, strength potential index, and microstructure [J]. BioResources, 2017, 12(3): 6283–6297. doi: 10.15376/biores.12.3.6283-6297
    [12]
    侯俊峰, 周永东. 木材热压干燥研究现状与应用前景 [J]. 世界林业研究, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y

    HOU J F, ZHOU Y D. Research status and application prospect of wood hot-press drying [J]. World Forestry Research, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y
    [13]
    赵钟声, 刘一星, 孟令联. 高温高压水蒸汽处理制造压缩木、人造板材的研究 [J]. 林业机械与木工设备, 2001, 29(11): 16–17. doi: 10.3969/j.issn.2095-2953.2001.11.005
    [14]
    ORMONDROYD G, SPEAR M, CURLING S. Modified wood: review of efficacy and service life testing [J]. Construction Materials, 2015, 168(4): 187–203. doi: 10.1680/coma.14.00072
    [15]
    王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001

    WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
    [16]
    BÁDER M, NÉMETH R. The effect of the relaxation time on the mechanical properties of longitudinally compressed wood [J]. Wood Research, 2018, 63(3): 383–398.
    [17]
    FELHOFER M, BOCK P, SINGH A, et al. Wood deformation leads to rearrangement of molecules at the nanoscale [J]. Nano Letters, 2020, 20(4): 2647–2653. doi: 10.1021/acs.nanolett.0c00205
    [18]
    LIANG X, GUO Y F, YAN J, et al. Pressure-mediated reconstruction of hydrogen bonding networks under ambient temperature towards high-strength cellulosic bulk materials [J]. Cellulose, 2024, 31(9): 5461–5477. doi: 10.1007/s10570-024-05936-3
    [19]
    周欢, 徐朝阳, 李健昱. 樟子松密实化前后吸能特性的对比 [J]. 林业工程学报, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007

    ZHOU H, XU Z Y, LI J Y. A comparison of energy absorption characteristics of Mongolian pine wood before and after densification [J]. Journal of Forestry Engineering, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007
    [20]
    LAINE K, SEGERHOLM K, WÅLINDER M, et al. Wood densification and thermal modification: hardness, set-recovery and micromorphology [J]. Wood Science and Technology, 2016, 50(5): 883–894. doi: 10.1007/s00226-016-0835-z
    [21]
    KELLOGG R M, WANGAARD F F. Variation in the cell-wall density of wood [J]. Wood and Fiber Science, 1969, 1(3): 180–204.
    [22]
    BORREGA M, GIBSON L J. Mechanics of balsa (Ochroma pyramidale) wood [J]. Mechanics of Materials, 2015, 84: 75–90. doi: 10.1016/j.mechmat.2015.01.014
    [23]
    张双燕. 化学成分对木材细胞壁力学性能影响的研究 [D]. 北京: 中国林业科学研究院, 2011.

    ZHANG S Y. Chemical components effect on mechanical properties of wood cell wall [D]. Beijing: Chinese Academy of Forestry, 2011.
    [24]
    刘一星, 赵广杰. 木材学 [M]. 2版. 北京: 中国林业出版社, 2012: 207–219.

    LIU Y X, ZHAO G J. Wood science [M]. 2nd ed. Beijing: China Forestry Publishing House, 2012: 207–219.
    [25]
    PAPANDREA S F, CATALDO M F, BERNARDI B, et al. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs [J]. Forests, 2022, 13(8): 1273. doi: 10.3390/f13081273
    [26]
    尹维, 田煜, 陶大帅, 等. 天然树木和竹子纤维材料的力学性能及仿生研究进展 [J]. 科学通报, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318

    YIN W, TIAN Y, TAO D S, et al. Research progress of mechanical properties of natural wood and bamboo fiber composites and their biomimetics [J]. Chinese Science Bulletin, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318
    [27]
    田蜜, 董晓娜, 曾祥全, 等. 黑黄檀木材物理和力学性质研究 [J]. 四川林业科技, 2024, 45(1): 115–119. doi: 10.12172/202304170003

    TIAN M, DONG X N, ZENG X Q, et al. Physical and mechanical properties of Dalbergia fusca wood [J]. Journal of Sichuan Forestry Science and Technology, 2024, 45(1): 115–119. doi: 10.12172/202304170003
    [28]
    WANG W H. Bulk metallic glasses with functional physical properties [J]. Advanced Materials, 2009, 21(45): 4524–4544. doi: 10.1002/adma.200901053
    [29]
    张爱丽, 田光辉, 郭颜凤. 不同强度等级下再生混凝土的力学及路用性能研究 [J]. 混凝土, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039

    ZHANG A L, TIAN G H, GUO Y F. Research on mechanical and road performance of recycled concrete under different strength grades [J]. Concrete, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039
    [30]
    黄友芬, 高奇, 李伟, 等. 高强自密实混凝土抗压强度影响因素分析 [J]. 中国建材科技, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008

    HUANG Y F, GAO Q, LI W, et al. Analysis of influencing factors on compressive strength of high strength self-compacting concrete [J]. China Building Materials Science & Technology, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008
    [31]
    GIBSON A J. Wood in the plastics industry [J]. Empire Forestry Journal, 1942, 21(2): 116–119.
    [32]
    龚勋, 魏文华, 赵小舟, 等. 碳化硼陶瓷的军工应用及前沿制备技术 [J]. 中国军转民, 2021(5): 56–59. doi: 10.3969/j.issn.1008-5874.2021.05.033
    [33]
    刘一星, 李坚, 刘君良, 等. 水蒸气处理法制作压缩整形木的研究(Ⅰ): 构造变化和尺寸稳定性 [J]. 东北林业大学学报, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003

    LIU Y X, LI J, LIU J L, et al. Study on compressive orthopaedy wood by stream treating at high temperature (Ⅰ): structure change and dimension stability [J]. Journal of Northeast Forestry University, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(495) PDF downloads(29) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return