| Citation: | YE Zi, ZHOU Xuefeng, XU Jianing, ZHOU Chenglin, YANG Yi, ZHENG Linpeng, CHEN Bin. High-Pressure Preparation of High-Strength Wood Materials[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 030101. doi: 10.11858/gywlxb.20251127 |
| [1] |
吴义强. 木材科学与技术研究新进展 [J]. 中南林业科技大学学报, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001
WU Y Q. Newly advances in wood science and technology [J]. Journal of Central South University of Forestry & Technology, 2021, 41(1): 1–28. doi: 10.14067/j.cnki.1673-923x.2021.01.001
|
| [2] |
ZHU Y M, ZHANG J, ZHANG Y, et al. Editorial: design and mechanical failure of deep-sea pressure structures [J]. Frontiers in Materials, 2023, 10: 1292283. doi: 10.3389/fmats.2023.1292283
|
| [3] |
MACDONALD A. High-pressure equipment for use in the laboratory, at sea and at depth [M]//MACDONALD A. Life at High Pressure: In the Deep Sea and Other Environments. Cham: Springer, 2021: 353–417.
|
| [4] |
AMAN Z, WEIXING Z, SHIPING W, et al. Dynamic response of the non-contact underwater explosions on naval equipment [J]. Marine Structures, 2011, 24(4): 396–411. doi: 10.1016/j.marstruc.2011.05.005
|
| [5] |
GUO X S, FAN N, LIU Y H, et al. Deep seabed mining: frontiers in engineering geology and environment [J]. International Journal of Coal Science & Technology, 2023, 10(1): 23. doi: 10.1007/s40789-023-00580-x
|
| [6] |
涂登云, 陈川富, 周桥芳, 等. 木材压缩改性技术研究进展 [J]. 林业工程学报, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036
TU D Y, CHEN C F, ZHOU Q F, et al. Research progress of thermo-mechanical compression techniques for wood products [J]. Journal of Forestry Engineering, 2021, 6(1): 13–20. doi: 10.13360/j.issn.2096-1359.202001036
|
| [7] |
NAVI P, PIZZI A. Property changes in thermo-hydro-mechanical processing: COST action FP0904 2010–2014: thermo-hydro-mechanical wood behavior and processing [J]. Holzforschung, 2015, 69(7): 863–873. doi: 10.1515/hf-2014-0198
|
| [8] |
SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material [J]. Nature, 2018, 554(7691): 224–228. doi: 10.1038/nature25476
|
| [9] |
HUANG W Z, JIN Y X, GUO Y, et al. Fabrication of high-performance densified wood via high-pressure steam treatment and hot-pressing [J]. Polymers, 2024, 16(7): 939. doi: 10.3390/polym16070939
|
| [10] |
LI H H, ZHANG F M, RAMASWAMY H S, et al. High-pressure treatment of Chinese fir wood: effect on density, mechanical properties, humidity-related moisture migration, and dimensional stability [J]. BioResources, 2016, 11(4): 10497–10510. doi: 10.15376/biores.11.4.10497-10510
|
| [11] |
YU Y, ZHANG F M, ZHU S M, et al. Effects of high-pressure treatment on poplar wood: density profile, mechanical properties, strength potential index, and microstructure [J]. BioResources, 2017, 12(3): 6283–6297. doi: 10.15376/biores.12.3.6283-6297
|
| [12] |
侯俊峰, 周永东. 木材热压干燥研究现状与应用前景 [J]. 世界林业研究, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y
HOU J F, ZHOU Y D. Research status and application prospect of wood hot-press drying [J]. World Forestry Research, 2017, 30(6): 41–45. doi: 10.13348/j.cnki.sjlyyj.2017.0077.y
|
| [13] |
赵钟声, 刘一星, 孟令联. 高温高压水蒸汽处理制造压缩木、人造板材的研究 [J]. 林业机械与木工设备, 2001, 29(11): 16–17. doi: 10.3969/j.issn.2095-2953.2001.11.005
|
| [14] |
ORMONDROYD G, SPEAR M, CURLING S. Modified wood: review of efficacy and service life testing [J]. Construction Materials, 2015, 168(4): 187–203. doi: 10.1680/coma.14.00072
|
| [15] |
王海阔, 贺端威, 许超, 等. 基于国产铰链式六面顶压机的大腔体静高压技术研究进展 [J]. 高压物理学报, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
WANG H K, HE D W, XU C, et al. Development of large volume-high static pressure techniques based on the hinge-type cubic presses [J]. Chinese Journal of High Pressure Physics, 2013, 27(5): 633–661. doi: 10.11858/gywlxb.2013.05.001
|
| [16] |
BÁDER M, NÉMETH R. The effect of the relaxation time on the mechanical properties of longitudinally compressed wood [J]. Wood Research, 2018, 63(3): 383–398.
|
| [17] |
FELHOFER M, BOCK P, SINGH A, et al. Wood deformation leads to rearrangement of molecules at the nanoscale [J]. Nano Letters, 2020, 20(4): 2647–2653. doi: 10.1021/acs.nanolett.0c00205
|
| [18] |
LIANG X, GUO Y F, YAN J, et al. Pressure-mediated reconstruction of hydrogen bonding networks under ambient temperature towards high-strength cellulosic bulk materials [J]. Cellulose, 2024, 31(9): 5461–5477. doi: 10.1007/s10570-024-05936-3
|
| [19] |
周欢, 徐朝阳, 李健昱. 樟子松密实化前后吸能特性的对比 [J]. 林业工程学报, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007
ZHOU H, XU Z Y, LI J Y. A comparison of energy absorption characteristics of Mongolian pine wood before and after densification [J]. Journal of Forestry Engineering, 2016, 1(3): 38–41. doi: 10.13360/j.issn.2096-1359.2016.03.007
|
| [20] |
LAINE K, SEGERHOLM K, WÅLINDER M, et al. Wood densification and thermal modification: hardness, set-recovery and micromorphology [J]. Wood Science and Technology, 2016, 50(5): 883–894. doi: 10.1007/s00226-016-0835-z
|
| [21] |
KELLOGG R M, WANGAARD F F. Variation in the cell-wall density of wood [J]. Wood and Fiber Science, 1969, 1(3): 180–204.
|
| [22] |
BORREGA M, GIBSON L J. Mechanics of balsa (Ochroma pyramidale) wood [J]. Mechanics of Materials, 2015, 84: 75–90. doi: 10.1016/j.mechmat.2015.01.014
|
| [23] |
张双燕. 化学成分对木材细胞壁力学性能影响的研究 [D]. 北京: 中国林业科学研究院, 2011.
ZHANG S Y. Chemical components effect on mechanical properties of wood cell wall [D]. Beijing: Chinese Academy of Forestry, 2011.
|
| [24] |
刘一星, 赵广杰. 木材学 [M]. 2版. 北京: 中国林业出版社, 2012: 207–219.
LIU Y X, ZHAO G J. Wood science [M]. 2nd ed. Beijing: China Forestry Publishing House, 2012: 207–219.
|
| [25] |
PAPANDREA S F, CATALDO M F, BERNARDI B, et al. The predictive accuracy of modulus of elasticity (MOE) in the wood of standing trees and logs [J]. Forests, 2022, 13(8): 1273. doi: 10.3390/f13081273
|
| [26] |
尹维, 田煜, 陶大帅, 等. 天然树木和竹子纤维材料的力学性能及仿生研究进展 [J]. 科学通报, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318
YIN W, TIAN Y, TAO D S, et al. Research progress of mechanical properties of natural wood and bamboo fiber composites and their biomimetics [J]. Chinese Science Bulletin, 2015, 60(31): 2949–2962. doi: 10.1360/N972014-01318
|
| [27] |
田蜜, 董晓娜, 曾祥全, 等. 黑黄檀木材物理和力学性质研究 [J]. 四川林业科技, 2024, 45(1): 115–119. doi: 10.12172/202304170003
TIAN M, DONG X N, ZENG X Q, et al. Physical and mechanical properties of Dalbergia fusca wood [J]. Journal of Sichuan Forestry Science and Technology, 2024, 45(1): 115–119. doi: 10.12172/202304170003
|
| [28] |
WANG W H. Bulk metallic glasses with functional physical properties [J]. Advanced Materials, 2009, 21(45): 4524–4544. doi: 10.1002/adma.200901053
|
| [29] |
张爱丽, 田光辉, 郭颜凤. 不同强度等级下再生混凝土的力学及路用性能研究 [J]. 混凝土, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039
ZHANG A L, TIAN G H, GUO Y F. Research on mechanical and road performance of recycled concrete under different strength grades [J]. Concrete, 2023(12): 192–195. doi: 10.3969/j.issn.1002-3550.2023.12.039
|
| [30] |
黄友芬, 高奇, 李伟, 等. 高强自密实混凝土抗压强度影响因素分析 [J]. 中国建材科技, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008
HUANG Y F, GAO Q, LI W, et al. Analysis of influencing factors on compressive strength of high strength self-compacting concrete [J]. China Building Materials Science & Technology, 2022, 31(6): 30–33. doi: 10.12164/j.issn.1003-8965.2022.06.008
|
| [31] |
GIBSON A J. Wood in the plastics industry [J]. Empire Forestry Journal, 1942, 21(2): 116–119.
|
| [32] |
龚勋, 魏文华, 赵小舟, 等. 碳化硼陶瓷的军工应用及前沿制备技术 [J]. 中国军转民, 2021(5): 56–59. doi: 10.3969/j.issn.1008-5874.2021.05.033
|
| [33] |
刘一星, 李坚, 刘君良, 等. 水蒸气处理法制作压缩整形木的研究(Ⅰ): 构造变化和尺寸稳定性 [J]. 东北林业大学学报, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003
LIU Y X, LI J, LIU J L, et al. Study on compressive orthopaedy wood by stream treating at high temperature (Ⅰ): structure change and dimension stability [J]. Journal of Northeast Forestry University, 2000, 28(4): 9–12. doi: 10.3969/j.issn.1000-5382.2000.04.003
|