Volume 40 Issue 3
Feb 2026
Turn off MathJax
Article Contents
FENG Zhijian, HU Menglei, ZHANG Xuefeng. Static and Dynamic Mechanical Properties and Ballistic Behavior of 6061 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 034101. doi: 10.11858/gywlxb.20251108
Citation: FENG Zhijian, HU Menglei, ZHANG Xuefeng. Static and Dynamic Mechanical Properties and Ballistic Behavior of 6061 Aluminum Alloy[J]. Chinese Journal of High Pressure Physics, 2026, 40(3): 034101. doi: 10.11858/gywlxb.20251108

Static and Dynamic Mechanical Properties and Ballistic Behavior of 6061 Aluminum Alloy

doi: 10.11858/gywlxb.20251108
Funds:  CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390-397. DOI: 10.3321/j.issn:1001-1455.2007.05.002.
  • Received Date: 11 Jun 2025
  • Rev Recd Date: 24 Jul 2025
  • Available Online: 27 Jul 2025
  • Issue Publish Date: 05 Feb 2026
  • Aluminum alloys are widely used in aerospace, shipbuilding and high-tech fields due to their excellent mechanical properties. However, they often suffer dynamic impact loading during service. Study of their mechanical responses under dynamic loading conditions holds both theoretical and engineering significance. In this study, 6061 aluminum alloy serves as the research object. In-depth research is conducted through systematic experimental tests and numerical simulations to characterise the static and dynamic mechanical properties and the ballistic response of the alloy. The experimental results show that within the strain rate range of 0.001−3800 s−1, 6061 aluminum alloy exhibits significant strain-rate strengthening effect. The flow stress increases by 18.5% with the increasing strain rate. However, its strain hardening behavior remains relatively stable under different strain rate conditions. Parameters of the Johnson-Cook constitutive model calibrated by the least square method can accurately describe the mechanical response at different strain rates. The ballistic experiment results show that the ballistic limit of a spherical projectile penetrating 6061 aluminum alloy target plate is 283 m/s, and the residual velocity has a good linear relationship with the incident velocity under the super-ballistic limit condition. The failure morphology analysis of the target plate reveals that the failure mode is related to the impact velocity. At low impact velocities, the overall deformation is dominated by composite stress. However, at high penetration velocities, it is mainly local shear failure. The finite element model established successfully reproduces the ballistic response and failure mode observed in the experiments, with an error of less than 5%, verifying the reliability of the fitted constitutive model parameters and numerical methods. Using an experimentally verified finite element model, the ballistic responses of spherical projectiles with different diameters penetrating a 6061 aluminum alloy target plate are studied. When the projectile diameters are 10, 8, and 6 mm, the ballistic limit velocities of the target plate were 283, 392, and 443 m/s, respectively. Therefore, under the condition of unchanged thickness of the target plate, the higher the projectile mass, the greater the ballistic limit velocity of the target plate. This study provides important theoretical basis and experimental data, and thus supports the engineering application of 6061 aluminum alloy under impact load conditions.

     

  • loading
  • [1]
    SENTHIL K, ARINDAM B, IQBAL M A, et al. Ballistic response of 2024 aluminium plates against blunt nose projectiles [J]. Procedia Engineering, 2017, 173: 363–368. doi: 10.1016/j.proeng.2016.12.030
    [2]
    王铮. 6061铝合金SHPB高温动态压缩特性研究 [J]. 山西冶金, 2024, 47(8): 72–73, 78. doi: 10.16525/j.cnki.cn14-1167/tf.2024.08.025

    WANG Z. Analysis of SHPB high temperature dynamic compression characteristics of 6061 aluminum alloy [J]. Shanxi Metallurgy, 2024, 47(8): 72–73, 78. doi: 10.16525/j.cnki.cn14-1167/tf.2024.08.025
    [3]
    时彦浩, 辛志杰, 鲁辉虎, 等. ZL205A铝合金动态力学性能及其本构模型 [J]. 精密成形工程, 2023, 15(10): 104–110. doi: 10.3969/j.issn.1674-6457.2023.010.012

    SHI Y H, XIN Z J, LU H H, et al. Dynamic mechanical properties and constitutive model of ZL205A aluminum alloy [J]. Journal of Netshape Forming Engineering, 2023, 15(10): 104–110. doi: 10.3969/j.issn.1674-6457.2023.010.012
    [4]
    何涛, 文鹤鸣. 可变形弹丸贯穿铝合金靶的数值模拟 [J]. 高压物理学报, 2008, 22(2): 153–159. doi: 10.3969/j.issn.1000-5773.2008.02.008

    HE T, WEN H M. Numerical simulations of the perforation of aluminum targets struck by a deformable projectile [J]. Chinese Journal of High Pressure Physics, 2008, 22(2): 153–159. doi: 10.3969/j.issn.1000-5773.2008.02.008
    [5]
    刘兵, 彭超群, 王日初, 等. 大飞机用铝合金的研究现状及展望 [J]. 中国有色金属学报, 2010, 20(9): 1705–1715. doi: 10.19476/j.ysxb.1004.0609.2010.09.008

    LIU B, PENG C Q, WANG R C, et al. Recent development and prospects for giant plane aluminum alloys [J]. The Chinese Journal of Nonferrous Metals, 2010, 20(9): 1705–1715. doi: 10.19476/j.ysxb.1004.0609.2010.09.008
    [6]
    储昭杰, 李波, 王文浩, 等. 6061铝合金热变形行为及动态再结晶研究 [J]. 稀有金属材料与工程, 2021, 50(7): 2502–2510. doi: 10.12442/j.issn.1002-185X.20200592

    CHU Z J, LI B, WANG W H, et al. Research on hot deformation behavior and dynamic recrystallization of 6061 aluminum alloy [J]. Rare Metal Materials and Engineering, 2021, 50(7): 2502–2510. doi: 10.12442/j.issn.1002-185X.20200592
    [7]
    穆邵帅. 6061-T6中厚板铝合金激光焊接工艺参数研究 [D]. 武汉: 华中科技大学, 2019: 2−3.

    MU S S. Research on laser welding process parameters of 6061-T6 heavy plate aluminum alloy [D]. Wuhan: Huazhong University of Science & Technology, 2019: 2−3.
    [8]
    GUO Y S, JIA B, FAN H, et al. Dynamic shear properties and microstructure evolution of commercially pure titanium with heterogeneous gradient microstructure [J]. Materials Science and Engineering: A, 2023, 880: 145378. doi: 10.1016/j.msea.2023.145378
    [9]
    杨兵, 罗忠宇, 黄浩, 等. 动态冲击载荷对7A52铝合金焊接接头组织和力学性能的影响 [J]. 塑性工程学报, 2022, 29(11): 200–208. doi: 10.3969/j.issn.1007-2012.2022.11.023

    YANG B, LUO Z Y, HUANG H, et al. Effect of dynamic impact load on microstructure and mechanical properties of 7A52 aluminum alloy welded joint [J]. Journal of Plasticity Engineering, 2022, 29(11): 200–208. doi: 10.3969/j.issn.1007-2012.2022.11.023
    [10]
    王泽平, 黄风雷, 丁儆, 等. 高加载率条件下LY12铝合金损伤断裂现象的研究 [J]. 高压物理学报, 1993, 7(1): 23–32. doi: 10.11858/gywlxb.1993.01.003

    WANG Z P, HUANG F L, DING J, et al. Studies of dynamic damage behavior in LY12 aluminum alloy under the condition of high loading rate [J]. Chinese Journal of High Pressure Physics, 1993, 7(1): 23–32. doi: 10.11858/gywlxb.1993.01.003
    [11]
    潘志波, 朱志武. 低温冲击下2024-T351铝合金动态力学性能与能量演化 [J]. 四川轻化工大学学报(自然科学版). 2025, 38(2): 17−25.

    PAN Z B, ZHU Z W. Dynamic mechanical properties and energy evolution of 2024-T351 aluminum alloy under cryogenic impact [J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2025, 38(2): 17−25.
    [12]
    BHURE V, TIWARI G, IQBAL M A, et al. The effect of target thickness on ballistic resistance of thin aluminium plates [J]. Materials Today: Proceedings, 2020, 21(4): 1999–2013. doi: 10.1016/j.matpr.2020.01.317
    [13]
    ROTH C C, FRAS T, MOHR D. Dynamic perforation of lightweight armor: temperature-dependent plasticity and fracture of aluminum 7020-T6 [J]. Mechanics of Materials, 2020, 149: 103537. doi: 10.1016/j.mechmat.2020.103537
    [14]
    SENTHIL K, IQBAL M A, ARINDAM B, et al. Ballistic resistance of 2024 aluminium plates against hemispherical, sphere and blunt nose projectiles [J]. Thin-Walled Structures, 2018, 126: 94–105. doi: 10.1016/j.tws.2017.02.028
    [15]
    程诗敏. 极端条件下航空铝合金材料的动态特性及耐撞性研究 [D]. 湘潭: 湘潭大学, 2023: 2−4.

    CHENG S M. Study on dynamic characteristics and crashworthiness of aviation aluminum alloy materials under extreme conditions [D]. Xiangtan: Xiangtan University, 2023: 2−4.
    [16]
    楼建锋, 王政, 洪滔, 等. 钨合金杆侵彻半无限厚铝合金靶的数值研究 [J]. 高压物理学报, 2009, 23(1): 65–70. doi: 10.3969/j.issn.1000-5773.2009.01.011

    LOU J F, WANG Z, HONG T, et al. Numerical study on penetration of semi-infinite aluminum-alloy targets by tungsten-alloy rod [J]. Chinese Journal of High Pressure Physics, 2009, 23(1): 65–70. doi: 10.3969/j.issn.1000-5773.2009.01.011
    [17]
    GUPTA N K, IQBAL M A, SEKHON G S. Effect of projectile nose shape, impact velocity and target thickness on deformation behavior of aluminum plates [J]. International Journal of Solids and Structures, 2007, 44(10): 3411–3439. doi: 10.1016/j.ijsolstr.2006.09.034
    [18]
    BØRVIK T, HOPPERSTAD O S, PEDERSEN K O. Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates [J]. International Journal of Impact Engineering, 2010, 37(5): 537–551. doi: 10.1016/j.ijimpeng.2009.11.001
    [19]
    FRAS T, COLARD L, LACH E, et al. Thick AA7020-T651 plates under ballistic impact of fragment-simulating projectiles [J]. International Journal of Impact Engineering, 2015, 86: 336–353. doi: 10.1016/j.ijimpeng.2015.08.001
    [20]
    HOLMEN J K, JOHNSEN J, HOPPERSTAD O S, et al. Influence of fragmentation on the capacity of aluminum alloy plates subjected to ballistic impact [J]. European Journal of Mechanics–A/Solids, 2016, 55: 221–233. doi: 10.1016/j.euromechsol.2015.09.009
    [21]
    肖新科, 陈琳, 杜太生. 7075-T651铝合金靶板剪切冲塞的试验和数值模拟研究 [J]. 振动与冲击, 2019, 38(3): 51–58. doi: 10.13465/j.cnki.jvs.2019.03.008

    XIAO X K, CHEN L, DU T S. Tests and numerical simulation for shear plugging of 7075-T651 aluminium alloy targets [J]. Journal of Vibration and Shock, 2019, 38(3): 51–58. doi: 10.13465/j.cnki.jvs.2019.03.008
    [22]
    司马玉洲, 肖新科, 王要沛, 等. 7A04-T6高强铝合金板对平头杆弹抗侵彻行为的试验与数值模拟研究 [J]. 振动与冲击, 2017, 36(11): 1–7, 13. doi: 10.13465/j.cnki.jvs.2017.11.001

    SIMA Y Z, XIAO X K, WANG Y P, et al. Tests and numerical simulation for anti-penetrating behavior of a high strength 7A04-T6 aluminium alloy plate against a blunt projectile’s impact [J]. Journal of Vibration and Shock, 2017, 36(11): 1–7, 13. doi: 10.13465/j.cnki.jvs.2017.11.001
    [23]
    GUO Y S, LIU R, ARAB A, et al. Dynamic behavior and adiabatic shearing formation of the commercially pure titanium with explosion-induced gradient microstructure [J]. Materials Science and Engineering: A, 2022, 833: 142340. doi: 10.1016/j.msea.2021.142340
    [24]
    LAMBERT J P, JONAS G H. Towards standardization in terminal ballistics testing: velocity representation [C]//Alexandria: Defense Technical Information Center (DTIC), 1976.
    [25]
    LIU R, JIAO Y, GUO Y S, et al. Dynamic behavior and microstructural evolution of TiAl alloys tailored via phase and grain size [J]. Journal of Materials Research and Technology, 2023, 22: 292–306. doi: 10.1016/j.jmrt.2022.11.109
    [26]
    陈刚, 陈小伟, 陈忠富, 等. A3钢钝头弹撞击45钢板破坏模式的数值分析 [J]. 爆炸与冲击, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002

    CHEN G, CHEN X W, CHEN Z F, et al. Simulations of A3 steel blunt projectiles impacting onto 45 steel plates [J]. Explosion and Shock Waves, 2007, 27(5): 390–397. doi: 10.3321/j.issn:1001-1455.2007.05.002
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(13)  / Tables(3)

    Article Metrics

    Article views(536) PDF downloads(48) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return