Volume 39 Issue 10
Oct 2025
Turn off MathJax
Article Contents
HUANG Yu, LIU Hong, LIU Lei. A First-Principles Study of Indium Migration in ZnS Minerals[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100104. doi: 10.11858/gywlxb.20251096
Citation: HUANG Yu, LIU Hong, LIU Lei. A First-Principles Study of Indium Migration in ZnS Minerals[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 100104. doi: 10.11858/gywlxb.20251096

A First-Principles Study of Indium Migration in ZnS Minerals

doi: 10.11858/gywlxb.20251096
Funds:  National Natural Science Foundation of China (41573121, 42174115, 42394114); Open Fundation of the United Laboratory of High-Pressure Physics and Earthquake Science (2019HPPES06)
More Information
  • Author Bio:

    HUANG Yu (1995-), male, master, major in high temperature and high pressure computational mineral physics. E-mail: huangyu235@mails.ucas.ac.cn

  • Corresponding author: LIU Hong (1977-), female, Ph.D, major in earthquake science and condensed matter physics. E-mail: liuh@ief.ac.cn
  • Received Date: 21 May 2025
  • Rev Recd Date: 24 Jun 2025
  • Available Online: 30 Jun 2025
  • Issue Publish Date: 05 Oct 2025
  • Understanding the diffusion mechanisms of indium (In) in ZnS minerals can clarify the kinetic processes governing its migration, enrichment, or depletion in these typical In-host minerals, thereby establishing a theoretical foundation for the exploration of high-grade In deposits. This study investigates sphalerite and wurtzite to identify stable In incorporation sites and diffusion pathways, and systematically calculates In transport properties in two types of ZnS minerals using first-principles calculations combined with the climbing image-nudged elastic band (CI-NEB) method. The results demonstrate that structural anisotropy significantly governs In diffusion characteristics, with wurtzite exhibiting stronger direction-dependent diffusion behavior and superior In retention capacity compared to sphalerite. Across the 0−10 GPa pressure range, In diffusion in wurtzite shows markedly higher anisotropy (2−3 orders of magnitude greater than in sphalerite) and consistently lower diffusion rates. Furthermore, closure temperature calculations reveal spatial heterogeneity, with the [111] direction in sphalerite (about 65 K higher than [110] direction) and the [001] direction in wurtzite (about 100 K higher than [100] direction) displaying elevated closure thresholds. Overall, wurtzite achieves higher closure temperatures than sphalerite. These computational findings indicate that wurtzite exhibits stronger In retention capabilities than sphalerite, suggesting its potential as a critical host mineral for In. These insights provide valuable implications for understanding In geochemical cycling and offer some guidance for mineral exploration and ore genesis studies.

     

  • loading
  • [1]
    VAUGHAN D J, CORKHILL C L. Mineralogy of sulfides [J]. Elements, 2017, 13(2): 81–87. doi: 10.2113/gselements.13.2.81
    [2]
    GALSIN J S. Crystal structure of solids [M]//GALSIN J S. Solid State Physics: An Introduction to Theory. Waltham: Academic Press, 2019: 1–36.
    [3]
    ZHAO T P, CHEN C, HE X H, et al. A synthesis of the geology, spatial-temporal distribution and enrichment mechanism of granite-related indium deposits in China [J]. Ore Geology Reviews, 2022, 146: 104932. doi: 10.1016/j.oregeorev.2022.104932
    [4]
    COOK N J, CIOBANU C L, PRING A, et al. Trace and minor elements in sphalerite: a LA-ICPMS study [J]. Geochimica et Cosmochimica Acta, 2009, 73(16): 4761–4791. doi: 10.1016/j.gca.2009.05.045
    [5]
    CLOSS L G, SCHWARZ-SCHAMPERA U, HERZIG P M. Indium: geology, mineralogy, and economics [J]. Mineralium Deposita, 2003, 38(7): 913. doi: 10.1007/s00126-003-0357-0
    [6]
    KIM H, SHIN D, IM H, et al. Distribution of indium and gallium in sphalerite from skarn and hydrothermal vein deposits in the Hwanggangri mineralized district, South Korea [J]. Journal of Geochemical Exploration, 2024, 259: 107418. doi: 10.1016/j.gexplo.2024.107418
    [7]
    YANG X, LI Y Q, CHEN J H. DFT study of the occurrence state of In and the correlation of In and Fe in sphalerite [J]. Minerals Engineering, 2022, 183: 107596. doi: 10.1016/j.mineng.2022.107596
    [8]
    WANG S L, LIU H X, YANG Z N. Anisotropic low-field electron diffusion coefficient and mobility in wurtzite indium nitride [J]. Physica Status Solidi B, 2014, 251(1): 168–171. doi: 10.1002/pssb.201349085
    [9]
    DUAN H C, HUANG F. Equilibrium indium isotope fractionation in chloride-rich aqueous solutions using first-principles calculations [J]. Geochimica et Cosmochimica Acta, 2025, 393: 304–317. doi: 10.1016/j.gca.2025.01.026
    [10]
    WANG K, BRODHOLT J, LU X C. Helium diffusion in olivine based on first principles calculations [J]. Geochimica et Cosmochimica Acta, 2015, 156: 145–153. doi: 10.1016/j.gca.2015.01.023
    [11]
    LI S C, LIU H, YANG Y C, et al. Diffusion of helium in calcite and aragonite: a first-principles study [J]. Chinese Journal of High Pressure Physics, 2019, 33(5): 052202. doi: 10.11858/gywlxb.20180698
    [12]
    LIU H, WANG L L, LI S C, et al. A first-principles study of helium diffusion in quartz and coesite under high pressure up to 12 GPa [J]. Geoscience Frontiers, 2021, 12(2): 1001–1009. doi: 10.1016/j.gsf.2020.09.009
    [13]
    WANG K, LU X C, BRODHOLT J P. Diffusion of noble gases in subduction zone hydrous minerals [J]. Geochimica et Cosmochimica Acta, 2020, 291: 50–61. doi: 10.1016/j.gca.2020.07.015
    [14]
    FIGOWY S, MOHN C E, CARACAS R. Noble gas migration in silica polymorphs at Earth’s mantle conditions [J]. Earth and Planetary Science Letters, 2024, 633: 118637. doi: 10.1016/j.jpgl.2024.118637
    [15]
    CHEN C, ZHAO T P. Metallogenesis of indium in magmatic hydrothermal system [J]. Mineral Deposits, 2021, 40(2): 206–220. doi: 10.16111/j.0258-7106.2021.02.002
    [16]
    MCINTYRE N S, CABRI L J, CHAUVIN W J, et al. Secondary ion mass spectrometric study of dissolved silver and indium in sulfide minerals [J]. Scanning Electron Microscopy, 1984, 3: 1139–1146.
    [17]
    JOHAN Z. Indium and germanium in the structure of sphalerite: an example of coupled substitution with copper [J]. Mineralogy and Petrology, 1988, 39(3): 211–229. doi: 10.1007/BF01163036
    [18]
    MURAKAMI H, ISHIHARA S. Trace elements of indium-bearing sphalerite from tin-polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study [J]. Ore Geology Reviews, 2013, 53: 223–243. doi: 10.1016/j.oregeorev.2013.01.010
    [19]
    XU J, LI X F. Spatial and temporal distributions, metallogenic backgrounds and processes of indium deposits [J]. Acta Petrologica Sinica, 2018, 34(12): 3611–3626.
    [20]
    FILIMONOVA O N, TRIGUB A L, TONKACHEEV D E, et al. Substitution mechanisms in In-, Au-, and Cu-bearing sphalerites studied by X-ray absorption spectroscopy of synthetic compounds and natural minerals [J]. Mineralogical Magazine, 2019, 83(3): 435–451. doi: 10.1180/mgm.2019.10
    [21]
    ZHOU Z B, WEN H J, QIN C J, et al. Geochemical and isotopic evidence for a magmatic-hydrothermal origin of the polymetallic vein-type Zn-Pb deposits in the northwest margin of Jiangnan Orogen, South China [J]. Ore Geology Reviews, 2017, 86: 673–691. doi: 10.1016/j.oregeorev.2017.03.022
    [22]
    HE X H, YOU Y Y, LI W T, et al. The enrichment mechanism of indium in Fe-enriched sphalerite from the Bainiuchang Zn-Sn polymetallic deposit, SW China [J]. Ore Geology Reviews, 2024, 167: 105981. doi: 10.1016/j.oregeorev.2024.105981
    [23]
    XIAO F, LIN W P, CHENG Q M. Ab-initio calculations and molecular dynamics simulations of In, Ag, and Cu replacing Zn in sphalerite: implications for critical metal mineralization [J]. Ore Geology Reviews, 2023, 163: 105699. doi: 10.1016/j.oregeorev.2023.105699
    [24]
    HE Z C, XIAO F, CHENG Q M. Substitution of In and Cu for Zn in wurtzite and sphalerite with implications for ore genesis: insights from ab initio calculations and molecular dynamics simulations [J]. Journal of Asian Earth Sciences, 2025, 279: 106460. doi: 10.1016/j.jseaes.2024.106460
    [25]
    HOHENBERG P, KOHN W. Density functional theory (DFT) [J]. Physical Review, 1964, 136(3B): B864–B871. doi: 10.1103/PhysRev.136.B864
    [26]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [27]
    KRESSE G, HAFNER J. Ab initio molecular dynamics for open-shell transition metals [J]. Physical Review B, 1993, 48(17): 13115–13118. doi: 10.1103/PhysRevB.48.13115
    [28]
    KRESSE G, FURTHMÜLLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186. doi: 10.1103/physrevb.54.11169
    [29]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [30]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [31]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [J]. Physical Review Letters, 1996, 77(18): 3865–3868. doi: 10.1103/PhysRevLett.77.3865
    [32]
    CHADI D J. Special points for Brillouin-zone integrations [J]. Physical Review B, 1977, 16(4): 1746–1747. doi: 10.1103/PhysRevB.16.1746
    [33]
    HENKELMAN G, UBERUAGA B P, JÓNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J]. The Journal of Chemical Physics, 2000, 113(22): 9901–9904. doi: 10.1063/1.1329672
    [34]
    VINEYARD G H. Frequency factors and isotope effects in solid state rate processes [J]. Journal of Physics and Chemistry of Solids, 1957, 3(1/2): 121–127. doi: 10.1016/0022-3697(57)90059-8
    [35]
    DODSON M H. Closure temperature in cooling geochronological and petrological systems [J]. Contributions to Mineralogy and Petrology, 1973, 40(3): 259–274. doi: 10.1007/BF00373790
    [36]
    FARLEY K A. Helium diffusion from apatite: general behavior as illustrated by Durango fluorapatite [J]. Journal of Geophysical Research: Solid Earth, 2000, 105(B2): 2903–2914. doi: 10.1029/1999JB900348
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(3)

    Article Metrics

    Article views(399) PDF downloads(26) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return