| Citation: | LUO Yuting, ZHAO Tingting, JU Kaixuan, WANG Zhiyong. Discrete Element Analysis on the Influence of Block Shape and Spatial Arrangement on Shielding Performance[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 125101. doi: 10.11858/gywlxb.20251087 |
| [1] |
穆朝民, 任辉启. 弹丸对钢筋混凝土中钢筋交汇处侵彻效应研究 [J]. 高压物理学报, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006
MU C M, REN H Q. Research on the effect of the projectile penetrating into the reinforced concrete targets at the intersection of the steel bar [J]. Chinese Journal of High Pressure Physics, 2010, 24(5): 351–358. doi: 10.11858/gywlxb.2010.05.006
|
| [2] |
邓旭辉, 王达锋. 近爆作用下中空夹层超高性能钢管混凝土柱的抗爆性能 [J]. 高压物理学报, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
DENG X H, WANG D F. Anti-blast performance of ultra-high performance concrete-filled double steel tubes under close in blast loading [J]. Chinese Journal of High Pressure Physics, 2020, 34(6): 065201. doi: 10.11858/gywlxb.20200540
|
| [3] |
AUSTIM C F, HALSEY C C, CLODT R L. Protection systems development: ESLTR339 [R]. Florida, USA: Tyndall Air Force Base, 1982.
|
| [4] |
GEBARA J M, PAN J B, ANDERSON J B. 浅埋结构块石防弹层的有限块法分析 [J]. 王承树, 译. 防护工程, 1994(1): 84–93.
GEBARA J M, PAN J B, ANDERSON J B. Finite block method analysis of the ballistic protection layer of shallow buried structural blocks [J]. Translated by WANG C S. Protective Engineering, 1994(1): 84–93.
|
| [5] |
ZHANG M H, SHIM V P W, LU G, et al. Resistance of high-strength concrete to projectile impact [J]. International Journal of Impact Engineering, 2005, 31(7): 825–841. doi: 10.1016/j.ijimpeng.2004.04.009
|
| [6] |
WU H, FANG Q, CHEN X W, et al. Projectile penetration of ultra-high performance cement based composites at 510–1 320 m/s [J]. Construction and Building Materials, 2015, 741: 88–200. doi: 10.1016/j.conbuildmat.2014.10.041
|
| [7] |
WU H, FANG Q, GONG J, et al. Projectile impact resistance of corundum aggregated UHP-SFRC [J]. International Journal of Impact Engineering, 2015, 84: 38–53. doi: 10.1016/j.ijimpeng.2015.05.007
|
| [8] |
逄高伟, 方秦, 孔祥振, 等. WDU-34/B战斗部侵彻块石遮弹层的数值模拟研究 [J]. 防护工程, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002
PANG G W, FANG Q, KONG X Z, et al. Numerical simulation of WDU-34/B warhead penetrating into rubble burster layer [J]. Protective Engineering, 2020, 42(4): 15–22. doi: 10.3969/j.issn.1674-1854.2020.04.002
|
| [9] |
FANG Q, ZHANG J H. 3D numerical modeling of projectile penetration into rock-rubble overlays accounting for random distribution of rock-rubble [J]. International Journal of Impact Engineering, 2014, 63: 118–128. doi: 10.1016/j.ijimpeng.2013.08.010
|
| [10] |
NIU Y Q, HUANG Z X, JIA X, et al. Research on the penetration performance of shaped charge jet into block stone concrete targets [J]. International Journal of Impact Engineering, 2024, 193: 105060. doi: 10.1016/J.IJIMPENG.2024.105060
|
| [11] |
郭虎, 何丽灵, 陈小伟, 等. 球形颗粒遮弹层对高速侵彻弹体的作用机理 [J]. 爆炸与冲击, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
GUO H, HE L L, CHEN X W, et al. Penetration mechanism of a high-speed projectile into a shelter made of spherical aggregates [J]. Explosion and Shock Waves, 2020, 40(10): 103301. doi: 10.11883/bzycj-2019-0428
|
| [12] |
MANDAL J, GOEL M D, AGARWAL A K. Surface and buried explosions: an explorative review with recent advances [J]. Archives of Computational Methods in Engineering, 2021, 28(7): 4815–4835. doi: 10.1007/s11831-021-09553-2
|
| [13] |
WANG G H, LU W B, YANG G D, et al. A state-of-the-art review on blast resistance and protection of high dams to blast loads [J]. International Journal of Impact Engineering, 2020, 139: 103529. doi: 10.1016/j.ijimpeng.2020.103529
|
| [14] |
POTYONDY D O, CUNDALL P A. A bonded-particle model for rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329–1364. doi: 10.1016/j.ijrmms.2004.09.011
|
| [15] |
张涛, 蔚立元, 鞠明和, 等. 基于PFC3D-GBM的晶体-单元体尺寸比对花岗岩动态拉伸特性影响分析 [J]. 岩石力学与工程学报, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
ZHANG T, YU L Y, JU M H, et al. Study on the effect of grain size-particle size ratio on the dynamic tensile properties of granite based on PFC3D-GBM [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 468–478. doi: 10.13722/j.cnki.jrme.2021.0303
|
| [16] |
LI W Y, SHI C, ZHANG C. Numerical study on the effect of grain size on rock dynamic tensile properties using PFC-GBM [J]. Computational Particle Mechanics, 2024, 11(1): 481–489. doi: 10.1007/s40571-023-00634-6
|
| [17] |
FAN R, LUO Y, GONG H L, et al. Dynamic damage and fracture characteristics of granite under cyclic impact simulated with coupled finite-difference and discrete element methods [J]. Mechanics of Time-Dependent Materials, 2023, 27(2): 469–487. doi: 10.1007/s11043-023-09597-w,
|
| [18] |
鞠明和, 陶泽军, 蔚立元, 等. 钢粒子迟滞重复冲击破岩硬岩损伤破裂特征研究 [J]. 岩土力学, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515
JU M H, TAO Z J, YU L Y, et al. Damage and fracture characteristics of hard rocks caused by hysterisis and repeated impacts of steel particles [J]. Rock and Soil Mechanics, 2024, 45(4): 1242–1255. doi: 10.16285/j.rsm.2023.0515
|
| [19] |
高飞, 邓树新, 张国凯, 等. 缩比模型弹侵彻岩石靶尺寸效应试验研究与理论分析 [J]. 兵工学报, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014
GAO F, DENG S X, ZHANG G K, et al. Experimental study and theoretical analysis of the size effect for scale model projectile penetrating into rock target [J]. Acta Armamentarii, 2023, 44(12): 3601–3612. doi: 10.12382/bgxb.2023.0014
|
| [20] |
FORRESTAL M J, FREW D J, HANCHAK S J, et al. Penetration of grout and concrete targets with ogive-nose steel projectiles [J]. International Journal of Impact Engineering, 1996, 18(5): 465–476. doi: 10.1016/0734-743X(95)00048-F
|
| [21] |
章涵, 向国梁, 王乐华, 等. 基于三维模型构建新方法的块石形状效应下S-RM宏细观剪切力学行为 [J]. 岩石力学与工程学报, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988
ZHANG H, XIANG G L, WANG L H, et al. Effect of block form on the shear marco- and meso-mechanical behaviors of S-RM based on 3D novel modelling approach [J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(10): 2030–2044. doi: 10.13722/j.cnki.jrme.2021.0988
|
| [22] |
崔溦, 魏杰, 王超, 等. 考虑颗粒级配和形态的颗粒柱坍塌特性离散元模拟 [J]. 岩土工程学报, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009
CUI W, WEI J, WANG C, et al. Discrete element simulation of collapse characteristics of particle column considering gradation and shape [J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2230–2239. doi: 10.11779/CJGE202112009
|
| [23] |
ZHOU Z L, ZHAO Y, JIANG Y H, et al. Dynamic behavior of rock during its post failure stage in SHPB tests [J]. Transactions of Nonferrous Metals Society of China, 2017, 27(1): 184–196. doi: 10.1016/S1003-6326(17)60021-9
|
| [24] |
赵婷婷, 冯云田. 大规模颗粒系统的精确缩尺和粗粒化离散元方法 [J]. 计算力学学报, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213
ZHAO T T, FENG Y T. Exact scaling laws and coarse-grained discrete element modelling of large scale granular systems [J]. Chinese Journal of Computational Mechanics, 2022, 39(3): 365–372. doi: 10.7511/jslxCMGM202213
|
| [25] |
FENG Y T, OWEN D R J. Discrete element modelling of large scale particle systems-Ⅰ: exact scaling laws [J]. Computational Particle Mechanics, 2014, 1(2): 159–168. doi: 10.1007/s40571-014-0010-y
|
| [26] |
张杰, 王志华, 王志勇, 等. 骨料对刚性弹正侵彻混凝土过程的影响机理 [J]. 中国科学: 技术科学, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483
ZHANG J, WANG Z H, WANG Z Y, et al. Impact mechanisms of aggregate on rigid projectile normal penetration into concrete target [J]. Scientia Sinica: Technologica, 2021, 51(3): 272–280. doi: 10.1360/SST-2020-0483
|
| [27] |
徐飞. 普通混凝土骨料最小空隙率的探讨 [J]. 混凝土, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006
XU F. The research of minimal fraction void of concrete aggregate [J]. Concrete, 2004(3): 17–18. doi: 10.3969/j.issn.1002-3550.2004.03.006
|
| [28] |
NASR A A, WANG B Z, CHEN S G, et al. Monitoring the flow patterns of high performance self-compacting concrete in the voids of sloped rock-filled concrete structures [J]. Ain Shams Engineering Journal, 2025, 16(3): 103313. doi: 10.1016/j.asej.2025.103313
|