| Citation: | WANG Xinxin, BAO Qiang, HE Anmin, SHAO Jianli, WANG Pei. Molecular Dynamics Simulation of Micro-Jetting and Spallation in Helium-Bubble Copper under Double Supported Shocks[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251075 |
| [1] |
韩长生. 估算冲击加载下材料自由面微射喷射量的一个半经验解析公式 [J]. 高压物理学报, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009
HAN C S. A semi-empirical equation for estimating the micro-jet ejection from shocked free-surface [J]. Chinese Journal of High Pressure Physics, 1989, 3(3): 234–240. doi: 10.11858/gywlxb.1989.03.009
|
| [2] |
韩长生, 经福谦, 丁儆, 等. 不同加载速率下铝自由面微粒子喷射现象研究 [J]. 高压物理学报, 1989, 3(2): 97–106. doi: 10.11858/gywlxb.1989.02.001
HAN C S, JING F Q, DING J, et al. Study on the phenomena of the mass ejection from the free surface of aluminum at different dynamic loading rates [J]. Chinese Journal of High Pressure Physics, 1989, 3(2): 97–106. doi: 10.11858/gywlxb.1989.02.001
|
| [3] |
王裴, 秦承森, 张树道, 等. SPH方法对金属表面微射流的数值模拟 [J]. 高压物理学报, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010
WANG P, QIN C S, ZHANG S D, et al. Simulated microjet from free surface of aluminum using smoothed particle hydrodynamics [J]. Chinese Journal of High Pressure Physics, 2004, 18(2): 149–156. doi: 10.3969/j.issn.1000-5773.2004.02.010
|
| [4] |
MARTZ J C, SCHWARTZ A J. Plutonium: aging mechanisms and weapon pit lifetime assessment [J]. JOM, 2003, 55(9): 19–23. doi: 10.1007/s11837-003-0023-0
|
| [5] |
GLAM B, ELIEZER S, MORENO D, et al. Dynamic fracture and spall in aluminum with helium bubbles [J]. International Journal of Fracture, 2010, 163(1/2): 217–224. doi: 10.1007/s10704-009-9437-1
|
| [6] |
GLAM B, STRAUSS M, ELIEZER S, et al. Shock compression and spall formation in aluminum containing helium bubbles at room temperature and near the melting temperature: experiments and simulations [J]. International Journal of Impact Engineering, 2014, 65: 1–12. doi: 10.1016/j.ijimpeng.2013.10.010
|
| [7] |
ZHU Q, SHAO J L, WANG P. The growth and coalescence of helium bubbles in bicrystal copper under tension [J]. Journal of Nuclear Materials, 2023, 582: 154489. doi: 10.1016/j.jnucmat.2023.154489
|
| [8] |
ZHU Q, SHAO J L, WANG P. Mechanism of nanoscale helium bubbles influencing dynamic tensile response of polycrystalline copper [J]. Mechanics of Materials, 2023, 185: 104755. doi: 10.1016/j.mechmat.2023.104755
|
| [9] |
JIANG D D, ZHOU T T, WANG P, et al. Dynamic tensile fracture of liquid copper containing helium bubbles [J]. International Journal of Mechanical Sciences, 2022, 232: 107585. doi: 10.1016/j.ijmecsci.2022.107585
|
| [10] |
WANG X X, NIU L L, WANG S Q. Strong trapping and slow diffusion of helium in a tungsten grain boundary [J]. Journal of Nuclear Materials, 2017, 487: 158–166. doi: 10.1016/j.jnucmat.2017.02.010
|
| [11] |
JIANG D D, SHAO J L, HE A M, et al. Dynamic fracture characteristics of nanocrystalline Al containing He bubbles [J]. Scripta Materialia, 2023, 234: 115546. doi: 10.1016/j.scriptamat.2023.115546
|
| [12] |
祁美兰, 贺红亮, 王永刚, 等. 高应变率拉伸下纯铝中氦泡长大的动力学研究 [J]. 高压物理学报, 2007, 21(2): 145–150. doi: 10.3969/j.issn.1000-5773.2007.02.005
QI M L, HE H L, WANG Y G, et al. Dynamic analysis of helium bubble growth in the pure Al under high strain-rate loading [J]. Chinese Journal of High Pressure Physics, 2007, 21(2): 145–150. doi: 10.3969/j.issn.1000-5773.2007.02.005
|
| [13] |
张凤国, 胡晓棉, 王裴, 等. 含氦泡金属铝层裂响应的数值分析 [J]. 爆炸与冲击, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06
ZHANG F G, HU X M, WANG P, et al. Numerical analysis of spall response in aluminum with helium bubbles [J]. Explosion and Shock Waves, 2017, 37(4): 699–704. doi: 10.11883/1001-1455(2017)04-0699-06
|
| [14] |
FENSIN S, JONES D, MARTINEZ D, et al. The role of helium on ejecta production in copper [J]. Materials, 2020, 13(6): 1270. doi: 10.3390/ma13061270
|
| [15] |
WANG X X, SHAO J L, WU B, et al. Enhancement of metal surface micro-jet by nanoscale helium bubbles under supported and unsupported shocks [J]. Physics of Fluids, 2023, 35(5): 052112. doi: 10.1063/5.0147095
|
| [16] |
LI B, WANG L, E J C, et al. Shock response of He bubbles in single crystal Cu [J]. Journal of Applied Physics, 2014, 116(21): 213506. doi: 10.1063/1.4903732
|
| [17] |
WANG X X, HE A M, YANG Y, et al. Shock responses of nanoporous copper with helium doping by molecular dynamics simulations [J]. Computational Materials Science, 2021, 188: 110190. doi: 10.1016/j.commatsci.2020.110190
|
| [18] |
WU H W, ZHOU T T, WANG P. The rupture and ejection of near-surface helium bubble in single crystal Cu under shock loading [J]. Journal of Nuclear Materials, 2022, 558: 153404. doi: 10.1016/j.jnucmat.2021.153404
|
| [19] |
YAN S N, WU B, WANG X X, et al. The mechanisms of temperature rise and wavefront broadening induced by nanoscale He bubbles in copper during shock loadings [J]. Journal of Applied Physics, 2025, 137(20): 205903. doi: 10.1063/5.0265864
|
| [20] |
FLANAGAN R M, HAHN E N, GERMANN T C, et al. Molecular dynamics simulations of ejecta formation in helium-implanted copper [J]. Scripta Materialia, 2020, 178: 114–118. doi: 10.1016/j.scriptamat.2019.11.005
|
| [21] |
ZHOU T T, ZHAO F Q, ZHOU H Q, et al. Atomistic simulation and continuum modeling of the dynamic tensile fracture and damage evolution of solid single crystalline Al with He bubble [J]. International Journal of Mechanical Sciences, 2022, 234: 107681. doi: 10.1016/j.ijmecsci.2022.107681
|
| [22] |
DURAND O, JAOUEN S, SOULARD L, et al. Comparative simulations of microjetting using atomistic and continuous approaches in the presence of viscosity and surface tension [J]. Journal of Applied Physics, 2017, 122(13): 135107. doi: 10.1063/1.4994789
|
| [23] |
BAO Q, WU B, WANG X X, et al. Molecular dynamics investigation of unsupported double-shock induced micro-jet behaviors in copper containing helium bubbles [J]. Physics of Fluids, 2024, 36(11): 112101. doi: 10.1063/5.0232654
|
| [24] |
BAO Q, SUI H N, WU B, et al. Near-surface fragmentation in irradiated copper under two successive shock loading: effects of local temperature re-distribution and helium bubble expansion [J]. Materials & Design, 2025, 254: 114013. doi: 10.1016/j.matdes.2025.114013
|
| [25] |
TRINKAUS H, SINGH B N. Helium accumulation in metals during irradiation-where do we stand? [J]. Journal of Nuclear Materials, 2003, 323(2/3): 229–242. doi: 10.1016/j.jnucmat.2003.09.001
|
| [26] |
SCHWARTZ A J, WALL M A, ZOCCO T G, et al. Characterization and modelling of helium bubbles in self-irradiated plutonium alloys [J]. Philosophical Magazine, 2005, 85(4): 479–488. doi: 10.1080/02678370412331320026
|
| [27] |
WU W D, SHAO J L. Numerical and theoretical study on shock-induced coalescence of He bubbles [J]. International Journal of Mechanical Sciences, 2022, 234: 107699. doi: 10.1016/j.ijmecsci.2022.107699
|
| [28] |
SHAO J L, WU W D. Shock-induced collapse and migration of nanoscale He bubble in single crystal Al [J]. Scripta Materialia, 2023, 222: 115033. doi: 10.1016/j.scriptamat.2022.115033
|
| [29] |
PLIMPTON S. Fast parallel algorithms for short-range molecular dynamics [J]. Journal of Computational Physics, 1995, 117(1): 1–19. doi: 10.1006/jcph.1995.1039
|
| [30] |
MISHIN Y, MEHL M J, PAPACONSTANTOPOULOS D A, et al. Structural stability and lattice defects in copper: ab initio, tight-binding, and embedded-atom calculations [J]. Physical Review B, 2001, 63(22): 224106. doi: 10.1103/PhysRevB.63.224106
|
| [31] |
BRINGAE M, CAZAMIAS J U, ERHART P, et al. Atomistic shock Hugoniot simulation of single-crystal copper [J]. Journal of Applied Physics, 2004, 96(7): 3793–3799. doi: 10.1063/1.1789266
|
| [32] |
LUO S N, HAN L B, XIE Y, et al. The relation between shock-state particle velocity and free surface velocity: a molecular dynamics study on single crystal Cu and silica glass [J]. Journal of Applied Physics, 2008, 103(9): 93530. doi: 10.1063/1.2919571
|
| [33] |
WANG L, NING X J. Molecular dynamics simulations of helium behaviour in copper crystals [J]. Chinese Physics Letters, 2003, 20(9): 1416–1419. doi: 10.1088/0256-307X/20/9/302
|
| [34] |
SHAO J L, WANG P, HE A M, et al. Influence of voids or He bubbles on the spall damage in single crystal Al [J]. Modelling and Simulation in Materials Science and Engineering, 2014, 22(2): 025012. doi: 10.1088/0965-0393/22/2/025012
|