| Citation: | CUI Siwen, LI Shixin, MA Shuailing, LIAN Min, ZHAO Xingbin, TAO Qiang, ZHU Pinwen. Phase Transition and Mechanical Property Modulation of Silicon Nitride at High Temperature and High Pressure[J]. Chinese Journal of High Pressure Physics, 2025, 39(12): 120101. doi: 10.11858/gywlxb.20251060 |
| [1] |
RILEY F L. Silicon nitride and related materials [J]. Journal of the American Ceramic Society, 2000, 83(2): 245–265. doi: 10.1111/j.1151-2916.2000.tb01182.x
|
| [2] |
ZHANG Y, WANG H J, ZHANG W, et al. Preparation and study of porous Si3N4 ceramics with high strength [J]. Rare Metal Materials and Engineering, 2004, 33(6): 655–658.
|
| [3] |
ZHOU Y, HYUGA H, KUSANO D, et al. A tough silicon nitride ceramic with high thermal conductivity [J]. Advanced Materials, 2011, 23(39): 4563–4567. doi: 10.1002/adma.201102462
|
| [4] |
肖桂凤, 唐志平, 周昌国, 等. 氮化硅陶瓷层裂强度的研究 [J]. 高压物理学报, 2005, 19(3): 219–224. doi: 10.11858/gywlxb.2005.03.005
XIAO G F, TANG Z P, ZHOU C G, et al. A study on the spallation behavior of silicon nitride [J]. Chinese Journal of High Pressure Physics, 2005, 19(3): 219–224. doi: 10.11858/gywlxb.2005.03.005
|
| [5] |
SOMIYA S. Hydrothermal corrosion of nitride and carbide of silicon [J]. Materials Chemistry and Physics, 2001, 67(1/2/3): 157–164. doi: 10.1016/S0254-0584(00)00434-X
|
| [6] |
DINIZ A E, GILES FERRER J A. A comparison between silicon nitride-based ceramic and coated carbide tools in the face milling of irregular surfaces [J]. Journal of Materials Processing Technology, 2008, 206(1/2/3): 294–304. doi: 10.1016/j.jmatprotec.2007.12.035
|
| [7] |
KAWAI N, TSURUI K, SHINDO D, et al. Fracture behavior of silicon nitride ceramics subjected to hypervelocity impact [J]. International Journal of Impact Engineering, 2011, 38(7): 542–545. doi: 10.1016/j.ijimpeng.2011.01.003
|
| [8] |
KONDO N, HYUGA H, KITA H. Joining of silicon nitride with silicon slurry via reaction bonding and post sintering [J]. Journal of the Ceramic Society of Japan, 2010, 118(1373): 9–12. doi: 10.2109/jcersj2.118.9
|
| [9] |
LIN Y D, YONG Z, LUO X S, et al. Monolithically integrated, broadband, high-efficiency silicon nitride-on-silicon waveguide photodetectors in a visible-light integrated photonics platform [J]. Nature Communications, 2022, 13(1): 6362. doi: 10.1038/s41467-022-34100-3
|
| [10] |
WANG L, SNIDLE R W, GU L. Rolling contact silicon nitride bearing technology: a review of recent research [J]. Wear, 2000, 246(1/2): 159–173. doi: 10.1016/S0043-1648(00)00504-4
|
| [11] |
PASUPULETI S, PEDDETTI R, SANTHANAM S, et al. The effect of nano-sized sintering aids on toughening behavior of silicon nitride [J]. Journal of Materials Science, 2008, 43(8): 2799–2805. doi: 10.1007/s10853-008-2543-z
|
| [12] |
MAZDIYASNI K S, COOKE C M. Consolidation, microstructure, and mechanical properties of Si3N4 doped with rare-earth oxides [J]. Journal of the American Ceramic Society, 1974, 57(12): 536–537. doi: 10.1111/j.1151-2916.1974.tb10806.x
|
| [13] |
ZHOU Y, HYUGA H, KUSANO D, et al. Effects of yttria and magnesia on densification and thermal conductivity of sintered reaction-bonded silicon nitrides [J]. Journal of the American Ceramic Society, 2019, 102(4): 1579–1588. doi: 10.1111/jace.16015
|
| [14] |
LI S S, CHEN H B, WANG W D, et al. Effects of Y2O3/MgO ratio on mechanical properties and thermal conductivity of silicon nitride ceramics [J]. International Journal of Applied Ceramic Technology, 2022, 19(5): 2873–2882. doi: 10.1111/ijac.14067
|
| [15] |
LI Y S, KIM H N, WU H B, et al. Microstructure and thermal conductivity of gas-pressure-sintered Si3N4 ceramic: the effects of Y2O3 additive content [J]. Journal of the European Ceramic Society, 2021, 41(1): 274–283. doi: 10.1016/j.jeurceramsoc.2020.08.035
|
| [16] |
ZHU X W, HAYASHI H, ZHOU Y, et al. Influence of additive composition on thermal and mechanical properties of β-Si3N4 ceramics [J]. Journal of Materials Research, 2004, 19(11): 3270–3278. doi: 10.1557/JMR.2004.0416
|
| [17] |
侯领, 沈维霞, 房超, 等. 高导热金刚石/铝复合材料的高温高压制备 [J]. 高压物理学报, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
HOU L, SHEN W X, FANG C, et al. High thermal conductivity of diamond/Al composites via high pressure and high temperature sintering [J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 053101. doi: 10.11858/gywlxb.20200514
|
| [18] |
邓雯丽, 邓福铭, 张鹏, 等. 纯PCBN高压烧结行为与工艺规律 [J]. 高压物理学报, 2018, 32(2): 023303. doi: 10.11858/gywlxb.20170617
DENG W L, DENG F M, ZHANG P, et al. Sintering behavior and technical rule of pure PCBN synthesized under high pressure [J]. Chinese Journal of High Pressure Physics, 2018, 32(2): 023303. doi: 10.11858/gywlxb.20170617
|
| [19] |
HE P H, HE Y L, LIANG W J, et al. Sintering polycrystalline silicon carbide composite ceramics with ultra-high hardness under high pressure [J]. International Journal of Refractory Metals and Hard Materials, 2024, 125: 106918. doi: 10.1016/j.ijrmhm.2024.106918
|
| [20] |
吴颖, 湛炎霞, 马锋杰, 等. 高压下超导氢化物研究进展 [J]. 中国科学: 物理学 力学 天文学, 2022, 52(7): 270006.
WU Y, ZHAN Y X, MA F J, et al. New progress in superconducting hydrides under high pressure [J]. Scientia Sinica Physica, Mechanica & Astronomica, 2022, 52(7): 270006.
|
| [21] |
FILGUEIRA M, NASCIMENTOÁ L N, OLIVEIRA M P, et al. HTHP sintering of binderless Si3N4: structure, microstructure, mechanical properties and machining behavior [J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40(3): 118. doi: 10.1007/s40430-018-1035-6
|
| [22] |
CHEN W, XU E G, LIU X Y, et al. Study on a novel Si3N4-based composite with the incorporation of N-GQDs produced from nano-lignin [J]. Ceramics International, 2024, 50(11): 19534–19542. doi: 10.1016/j.ceramint.2024.03.052
|
| [23] |
TONG Z W, JI H M, LI X L, et al. Microstructure control and optimization of low temperature pressureless sintered silicon nitride-barium aluminosilicate composites [J]. Journal of the European Ceramic Society, 2020, 40(12): 4177–4183. doi: 10.1016/j.jeurceramsoc.2020.05.009
|
| [24] |
HU J B, ZHANG B, LI C, et al. Fabrication of Si3N4 ceramics with high thermal conductivity and flexural strength via novel two-step gas-pressure sintering [J]. Journal of the European Ceramic Society, 2022, 42(12): 4846–4854. doi: 10.1016/j.jeurceramsoc.2022.04.049
|
| [25] |
TIEGS T N, MONTGOMERY F C, SCHROEDER J L, et al. Effect of powder characteristics on the α- to β-Si3N4 transformation kinetics [M]//SINGH J P. Proceedings of the 21st Annual Conference on Composites, Advanced Ceramics, Materials, and Structures B: Ceramic Engineering and Science Proceedings. Westerville: The American Ceramic Society, 1997.
|
| [26] |
BOCANEGRA-BERNAL M H, MATOVIC B. Dense and near-net-shape fabrication of Si3N4 ceramics [J]. Materials Science and Engineering: A, 2009, 500(1/2): 130–149. doi: 10.1016/j.msea.2008.09.015
|