Turn off MathJax
Article Contents
DAI Feifan, XIANG Shikai, LI Weiwei, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang, WU Run, XIAN Yunting. Quantification of Uncertainty in Magnesium Oxide and Rhenium Pressure Standards Based on Bayesian Statistical Methods[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251056
Citation: DAI Feifan, XIANG Shikai, LI Weiwei, ZHANG Ruizhi, ZHANG Jian, LUO Guoqiang, WU Run, XIAN Yunting. Quantification of Uncertainty in Magnesium Oxide and Rhenium Pressure Standards Based on Bayesian Statistical Methods[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251056

Quantification of Uncertainty in Magnesium Oxide and Rhenium Pressure Standards Based on Bayesian Statistical Methods

doi: 10.11858/gywlxb.20251056
  • Received Date: 21 Mar 2025
  • Rev Recd Date: 08 May 2025
  • Accepted Date: 23 Sep 2025
  • Available Online: 12 May 2025
  • Accurate pressure measurement in static high-pressure experiments relies on the equation of state (EOS) of standard materials, where uncertainties in EOS parameters can significantly affect the accuracy of pressure predictions. This study focuses on magnesium oxide (MgO, B1 phase) and rhenium (Re, hexagonal close packed phase), employing Bayesian statistical methods and Markov Chain Monte Carlo (MCMC) simulation techniques to systematically quantify the uncertainty in pressure prediction during diamond anvil cell (DAC) experiments. By constructing a Bayesian framework with uniform prior distributions and normal likelihood functions, and integrating multiple sets of experimental data for parameter calibration, the results demonstrate that the Bayesian statistical approach successfully quantifies the posterior distribution of EOS parameters, revealing strong correlations between them, e.g., a negative correlation between Grüneisen parameter and initial volume for MgO, and a positive correlation between bulk modulus and Grüneisen parameter for Re. The uncertainty in pressure predictions for both MgO and Re increases significantly at higher pressures; for Re, this uncertainty also rises markedly with increasing temperature, whereas no clear trend is observed for MgO. This study provides pressure benchmarks with quantified uncertainties, contributing to improved accuracy in high-pressure experimental measurements. It holds significant reference value for ensuring the reliability of experimental data in materials science and geophysical research.

     

  • loading
  • [1]
    PEI S H, WANG Z H, XIA J. High pressure studies of 2D materials and heterostructures: a review [J]. Materials & Design, 2022, 213: 110363. doi: 10.1016/j.matdes.2021.110363
    [2]
    LI Q J, ZHANG H F, LIU R, et al. Nanosize effects assisted synthesis of the high pressure metastable phase in ZrO2 [J]. Nanoscale, 2016, 84: 2412–2417. doi: 10.1039/C5NR07503C
    [3]
    SALAMAT A, FISCHER R A, BRIGGS R, et al. In situ synchrotron X-ray diffraction in the laser-heated diamond anvil cell: melting phenomena and synthesis of new materials [J]. Coordination Chemistry Reviews, 2014, 277/278: 15−30.
    [4]
    SHEN G Y, MAO H K. High-pressure studies with X-rays using diamond anvil cells [J]. Reports on Progress in Physics, 2017, 801: 016101. doi: 10.1088/1361-6633/80/1/016101
    [5]
    DING Y J, SUN Y D, JIANG S Q, et al. Frontier in the diamond anvil cell techniques for ultrahigh pressure generation [J]. Journal of Physics: Condensed Matter, 2023, 3531: 313002. doi: 10.1088/1361-648X/acd15e
    [6]
    SEMAN S A H A, AHMAD R, AKIL H M. Meso-scale modelling and failure analysis of kenaf fiber reinforced composites under high strain rate compression loading [J]. Composites Part B: Engineering, 2019, 163: 403–412. doi: 10.1016/j.compositesb.2019.01.037
    [7]
    DOROGOKUPETS P I. P-V-T equations of state of MgO and thermodynamics [J]. Physics and Chemistry of Minerals, 2010, 379: 677–684. doi: 10.1007/s00269-010-0367-2
    [8]
    WU Z Q, WENTZCOVITCH R M, UMEMOTO K, et al. Pressure-volume-temperature relations in MgO: an ultrahigh pressure-temperature scale for planetary sciences applications [J]. Journal of Geophysical Research: Solid Earth, 2008, 113B6: B06204.
    [9]
    LUO Y, XIANG S K, LI J, et al. Equation of state of MgO up to 345 GPa and 8 500 K [J]. Physical Review B, 2023, 10713: 134116. doi: 10.1103/PhysRevB.107.134116
    [10]
    XIAN Y T, XIANG S K, LIU L, et al. Accurate equation of state of rhenium as pressure scale up to 130 GPa and 3 200 K [J]. AIP Advances, 2022, 125: 055313. doi: 10.1063/5.0089292
    [11]
    WU R, XIANG S K, SUN Y, et al. Obtaining the equation of state for multiphase iron under Earth’s core conditions using Bayesian statistics [J]. Journal of Applied Physics, 2025, 1373: 035904. doi: 10.1063/5.0240471
    [12]
    LINDQUIST B A, JADRICH R B. Uncertainty quantification for a multi-phase carbon equation of state model [J]. Journal of Applied Physics, 2022, 13115: 155104. doi: 10.1063/5.0087210
    [13]
    LINDQUIST B A, JADRICH R B. Uncertainty quantification for a multi-phase magnesium equation of state [J]. AIP Conference Proceedings, 2023, 28441: 310006. doi: 10.1063/12.0020372
    [14]
    LINDQUIST B A, JADRICH R B, TICKNOR C. Uncertainty quantification for a TNT equation of state including the kinetic burn model [J]. AIP Conference Proceedings, 2024, 30661: 480010. doi: 10.1063/12.0028591
    [15]
    SOKOLOVA T S, DOROGOKUPETS P I, LITASOV K D. Self-consistent pressure scales based on the equations of state for ruby diamond MgO B2-NaCl as well as Au Pt and other metals to 4 Mbar and 3 000 K [J]. Russian Geology and Geophysics, 2013, 542: 181–199. doi: 10.1016/j.rgg.2013.01.005
    [16]
    JEANLOZ R, GODWAL B K, MEADE C. Static strength and equation of state of rhenium at ultra-high pressures [J]. Nature, 1991, 3496311: 687–689. doi: 10.1038/349687a0
    [17]
    VAN DE, SCHOOT R, DEPAOLI S, KING R, et al. Bayesian statistics and modelling [J]. Nature Reviews Methods Primers, 2021, 11: 1. doi: 10.1038/s43586-020-00001-2
    [18]
    VINET P, FERRANTE J, SMITH J R, et al. A universal equation of state for solids [J]. Journal of Physics C: Solid State Physics, 1986, 1920: L467–L473. doi: 10.1088/0022-3719/19/20/001
    [19]
    BOUCHET J, MAZEVET S, MORARD G, et al. Ab initio equation of state of iron up to 1 500 GPa [J]. Physical Review B, 2013, 879: 094102. doi: 10.1103/PhysRevB.87.094102
    [20]
    FOREMAN-MACKEY D, HOGG D W, LANG D, et al. EMCEE: the MCMC hammer [J]. Publications of the Astronomical Society of the Pacific, 2013, 125925: 306–312. doi: 10.1086/670067
    [21]
    MARSH S P. LASL shock Hugoniot data [M]. Berkeley: University of California Press, 1980: 1–500.
    [22]
    ZHANG L, GONG Z Z, FEI Y W. Shock-induced phase transitions in the MgO-FeO system to 200 GPa [J]. Journal of Physics and Chemistry of Solids, 2008, 699: 2344–2348. doi: 10.1016/j.jpcs.2008.04.006
    [23]
    VASSILIOU M S, AHRENS T J. Hugoniot equation of state of periclase to 200 GPa [J]. Geophysical Research Letters, 1981, 87: 729–732. doi: 10.1029/GL008i007p00729
    [24]
    SVENDSEN B, AHRENS T J. Shock-induced temperatures of MgO [J]. Geophysical Journal International, 1987, 913: 667–691. doi: 10.1111/j.1365-246X.1987.tb01664.x
    [25]
    FAT'YANOV O V, ASIMOW P D, AHRENS T J. Thermodynamically complete equation of state of MgO from true radiative shock temperature measurements on samples preheated to 1 850 K [J]. Physical Review B, 2018, 972: 024106. doi: 10.1103/PhysRevB.97.024106
    [26]
    REEBER R R, GOESSEL K, WANG K. Thermal expansion and molar volume of MgO periclase from 5 to 2 900 K [J]. European Journal of Mineralogy, 1995, 75: 1039–1047. doi: 10.1127/ejm/7/5/1039
    [27]
    KONO Y, IRIFUNE T, HIGO Y, et al. P-V-T relation of MgO derived by simultaneous elastic wave velocity and in situ X-ray measurements: a new pressure scale for the mantle transition region [J]. Physics of the Earth and Planetary Interiors, 2010, 1831/2: 196−211.
    [28]
    GARVIN D, PARKER V B, WHITE JR H J. CODATA thermodynamic tables [M]. Washington, USA: Hemisphere Pub, 1987: 1–200.
    [29]
    GMELIN E. Thermal properties of alcaline-earth-oxides Ⅰ. specific heat measurements 1-3 centre national de Recherches sur les Tres basses temperatures [J]. Zeitschrift für Naturforschung A, 1969, 2411: 1794–1800. doi: 10.1515/zna-1969-1120
    [30]
    ZHA C S, BASSETT W A, SHIM S H. Rhenium an in situ pressure calibrant for internally heated diamond anvil cells [J]. Review of Scientific Instruments, 2004, 757: 2409–2418. doi: 10.1063/1.1765752
    [31]
    IKUTA D, OHTANI E FUKUI H, et al. Density deficit of Earth’s core revealed by a multimegabar primary pressure scale [J]. Science Advances, 2023, 936: eadh8706. doi: 10.1126/sciadv.adh8706
    [32]
    ZEL’DOVICH Y B, RAIZER Y P. Physics of shock waves and high-temperature hydrodynamic phenomena [M]. New York, USA: Dover Publications, 2002.
    [33]
    GELMAN A, RUBIN D B. A single series from the Gibbs sampler provides a false sense of security [M]//BERNARDO J M, BERGER J O, DAWID P, et al. Bayesian Statistics 4: Proceedings of the Fourth Valencia International Meeting Dedicated to the Memory of Morris H. DeGroot 1931–1989. Oxford: Oxford Academic, 1992: 625−632.
    [34]
    GOODMAN J, WEARE J. Ensemble samplers with affine invariance [J]. Communications in Applied Mathematics and Computational Science, 2010, 51: 65–80. doi: 10.2140/camcos.2010.5.65
    [35]
    JIN K, LI X Z, WU Q, et al. The pressure-volume-temperature equation of state of MgO derived from shock Hugoniot data and its application as a pressure scale [J]. Journal of Applied Physics, 2010, 10711: 113518. doi: 10.1063/1.3406140
    [36]
    TANGE Y, NISHIHARA Y, TSUCHIYA T. Unified analyses for P-V-T equation of state of MgO: a solution for pressure-scale problems in high P-T experiments [J]. Journal of Geophysical Research: Solid Earth, 2009, 114B3: B03208.
    [37]
    DOROGOKUPETS P I, DEWAELE A. Equations of state of MgO Au Pt NaCl-B1 and NaCl-B2: internally consistent high-temperature pressure scales [J]. High Pressure Research, 2007, 274: 431–446. doi: 10.1080/08957950701659700
    [38]
    DUBROVINSKY L, DUBROVINSKAIA N, PRAKAPENKA V B, et al. Implementation of micro-ball nanodiamond anvils for high-pressure studies above 6 Mbar [J]. Nature Communications, 2012, 31: 1163. doi: 10.1038/ncomms2160
    [39]
    LV M B, CHENG Y, QI Y Y, et al. Elastic properties and phonon dispersions of rhenium in hexagonal-close-packed structure under pressure from first principles [J]. Physica B: Condensed Matter, 2012, 4074: 778–783. doi: 10.1016/j.physb.2011.12.024
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(4)

    Article Metrics

    Article views(181) PDF downloads(21) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return