Turn off MathJax
Article Contents
CHEN Kaile, WANG Yuechao, XU Yuanji, LIU Yu, XIAN Jiawei, WANG Lifang, JIAN Dan, LIU Haifeng, SONG Haifeng. First-Principles Study on the Multiphase Equation of State of Tin[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251054
Citation: CHEN Kaile, WANG Yuechao, XU Yuanji, LIU Yu, XIAN Jiawei, WANG Lifang, JIAN Dan, LIU Haifeng, SONG Haifeng. First-Principles Study on the Multiphase Equation of State of Tin[J]. Chinese Journal of High Pressure Physics. doi: 10.11858/gywlxb.20251054

First-Principles Study on the Multiphase Equation of State of Tin

doi: 10.11858/gywlxb.20251054
  • Received Date: 20 Mar 2025
  • Rev Recd Date: 08 Apr 2025
  • Accepted Date: 08 Sep 2025
  • Available Online: 23 Apr 2025
  • Metallic tin is a focal point in high-pressure physics research and a critical material of strategic importance in defense-related technologies. Due to the rich physical phases of tin, it is crucial to study the multiphase equation of state and phase boundaries of tin, whether in basic research or industrial applications. This work systematically investigates the high-temperature and high-pressure multiphase equation of state (EOS), phase boundaries, elastic modulus, sound velocities, and Hugoniot curves of tin using density functional theory (DFT) combined with the mean-field potential (MFP) method. The results not only provide the multiphase EOS of tin under extreme conditions but also demonstrate good agreement with experimental data for the β-γ phase boundary and ambient-pressure sound velocities of β-Sn. Furthermore, this study evaluates the effects of different density functionals (LDA, PBEsol, and SCAN) on the high-pressure EOS. The LDA and PBEsol functionals show superior consistency with experimental Hugoniot curves and ambient-pressure elastic moduli, while the SCAN functional exhibits larger deviations in phase boundary predictions but achieves closer agreement with experimental ambient-pressure sound velocities for β-Sn.

     

  • loading
  • [1]
    余克章. 锡(Sn)——金属在现代军事上的应用(十四) [J]. 金属世界, 1996(3): 18–19.

    YU K Z. The use of metals in modern military applications (14): tin (Sn) [J]. Metal World, 1996(3): 18–19.
    [2]
    BUTTLER W T, WILLIAMS R J R, NAJJAR F M. Foreword to the special issue on ejecta [J]. Journal of Dynamic Behavior of Materials, 2017, 3(2): 151–155. doi: 10.1007/s40870-017-0120-8
    [3]
    DEFFRENNES G, FAURE P, BOTTIN F, et al. Tin (Sn) at high pressure: review, X-ray diffraction, DFT calculations, and Gibbs energy modeling [J]. Journal of Alloys and Compounds, 2022, 919: 165675. doi: 10.1016/j.jallcom.2022.165675
    [4]
    CHEN T, YUAN F B, LIU J C, et al. Modeling the high-pressure solid and liquid phases of tin from deep potentials with ab initio accuracy [J]. Physical Review Materials, 2023, 7(5): 053603. doi: 10.1103/PhysRevMaterials.7.053603
    [5]
    CORNELIUS B, TREIVISH S, ROSENTHAL Y, et al. The phenomenon of tin pest: a review [J]. Microelectronics Reliability, 2017, 79: 175–192. doi: 10.1016/j.microrel.2017.10.030
    [6]
    SALAMAT A, BRIGGS R, BOUVIER P, et al. High-pressure structural transformations of Sn up to 138 GPa: angle-dispersive synchrotron X-ray diffraction study [J]. Physical Review B, 2013, 88(10): 104104. doi: 10.1103/PhysRevB.88.104104
    [7]
    LIU M, LIU L G. Compressions and phase transitions of tin to half a megabar [J]. High Temperatures High Pressures, 1986, 18(1): 79–85.
    [8]
    OLIJNYK H, HOLZAPFEL W B. Phase transitions in Si, Ge and Sn under pressure [J]. Journal de Physique Colloques, 1984, 45(C8): 153–156. doi: 10.1051/jphyscol:1984828
    [9]
    DESGRENIERS S, VOHRA Y K, RUOFF A L. Tin at high pressure: an energy-dispersive X-ray-diffraction study to 120 GPa [J]. Physical Review B, 1989, 39(14): 10359–10361. doi: 10.1103/PhysRevB.39.10359
    [10]
    SMIRNOV N A. Ab initio calculations of the phase diagrams of tin and lead under pressures up to a few TPa [J]. Journal of Physics: Condensed Matter, 2021, 33(3): 035402. doi: 10.1088/1361-648X/abbbc5
    [11]
    MABIRE C, HÉREIL P L. Shock induced polymorphic transition and melting of tin [J]. AIP Conference Proceedings, 2000, 505(1): 93–96. doi: 10.1063/1.1303429
    [12]
    CHAUVIN C, ZUCCHINI F, DE BARROS D P. Study on phase transformation in tin under dynamic compression [C]//2019 15th Hypervelocity Impact Symposium. Destin: American Society of Mechanical Engineers, 2019: V001T09A006.
    [13]
    HU J B, ZHOU X M, DAI C D, et al. Shock-induced bct-bcc transition and melting of tin identified by sound velocity measurements [J]. Journal of Applied Physics, 2008, 104(8): 083520. doi: 10.1063/1.3003325
    [14]
    XU L, BI Y, LI X H, et al. Phase diagram of tin determined by sound velocity measurements on multi-anvil apparatus up to 5 GPa and 800 K [J]. Journal of Applied Physics, 2014, 115(16): 164903. doi: 10.1063/1.4872458
    [15]
    HAFNER J. Ab initio calculation of the pressure-induced A4→A5→2 (distorted)→A3 phase transitions in tin [J]. Physical Review B, 1974, 10(10): 4151–4160. doi: 10.1103/PhysRevB.10.4151
    [16]
    IHM J, COHEN M L. Equilibrium properties and the phase transition of grey and white tin [J]. Physical Review B, 1981, 23(4): 1576–1579. doi: 10.1103/PhysRevB.23.1576
    [17]
    REDDY P J, SUBRAHMANYAM S V. Dependence on temperature of elastic moduli of tin [J]. Nature, 1960, 185(4705): 29. doi: 10.1038/185029a0
    [18]
    PRICE D L, ROWE J M, NICKLOW R M. Lattice dynamics of grey tin and indium antimonide [J]. Physical Review B, 1971, 3(4): 1268–1279. doi: 10.1103/PhysRevB.3.1268
    [19]
    CUI S X, CAI L C, FENG W X, et al. First-principles study of phase transition of tin and lead under high pressure [J]. Physica Status Solidi (b), 2008, 245(1): 53–57. doi: 10.1002/pssb.200743240
    [20]
    CHEN C C, APPLETON R J, NYKIEL K, et al. How accurate is density functional theory at high pressures? [J]. Computational Materials Science, 2025, 247: 113458. doi: 10.1016/j.commatsci.2024.113458
    [21]
    PERDEW J P, RUZSINSZKY A, CSONKA G I, et al. Restoring the density-gradient expansion for exchange in solids and surfaces [J]. Physical Review Letters, 2008, 100(13): 136406. doi: 10.1103/PhysRevLett.100.136406
    [22]
    KOHN W, SHAM L J. Self-consistent equations including exchange and correlation effects [J]. Physical Review, 1965, 140(4A): A1133–A1138. doi: 10.1103/PhysRev.140.A1133
    [23]
    PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)] [J]. Physical Review Letters, 1997, 78(7): 1396. doi: 10.1103/PhysRevLett.78.1396
    [24]
    CORKILL J L, GARCA A, COHEN M L. Theoretical study of high-pressure phases of tin [J]. Physical Review B, 1991, 43(11): 9251–9254. doi: 10.1103/PhysRevB.43.9251
    [25]
    AGUADO A. First-principles study of elastic properties and pressure-induced phase transitions of Sn: LDA versus GGA results [J]. Physical Review B, 2003, 67(21): 212104. doi: 10.1103/PhysRevB.67.212104
    [26]
    YU C, LIU J Y, LU H, et al. Ab initio calculation of the properties and pressure induced transition of Sn [J]. Solid State Communications, 2006, 140(11/12): 538–543. doi: 10.1016/j.ssc.2006.09.026
    [27]
    SHAHI C, SUN J W, PERDEW J P. Accurate critical pressures for structural phase transitions of group Ⅳ, Ⅲ-Ⅴ, and Ⅱ-Ⅵ compounds from the SCAN density functional [J]. Physical Review B, 2018, 97(9): 094111. doi: 10.1103/PhysRevB.97.094111
    [28]
    ZHANG L, LI Y H, YU Y Y, et al. General construction of mean-field potential and its application to the multiphase equations of state of tin [J]. Physica B: Condensed Matter, 2011, 406(22): 4163–4169. doi: 10.1016/j.physb.2011.01.018
    [29]
    KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775. doi: 10.1103/PhysRevB.59.1758
    [30]
    DONG W, KRESSE G, FURTHMÜLLER J, et al. Chemisorption of H on Pd(111): an ab initio approach with ultrasoft pseudopotentials [J]. Physical Review B, 1996, 54(3): 2157–2166. doi: 10.1103/PhysRevB.54.2157
    [31]
    KRESSE G, FURTHMÜLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set [J]. Computational Materials Science, 1996, 6(1): 15–50. doi: 10.1016/0927-0256(96)00008-0
    [32]
    MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192. doi: 10.1103/PhysRevB.13.5188
    [33]
    BLÖCHL P E. Projector augmented-wave method [J]. Physical Review B, 1994, 50(24): 17953–17979. doi: 10.1103/PhysRevB.50.17953
    [34]
    SUN J W, RUZSINSZKY A, PERDEW J P. Strongly constrained and appropriately normed semilocal density functional [J]. Physical Review Letters, 2015, 115(3): 036402. doi: 10.1103/PhysRevLett.115.036402
    [35]
    METHFESSEL M, PAXTON A T. High-precision sampling for Brillouin-zone integration in metals [J]. Physical Review B, 1989, 40(6): 3616–3621. doi: 10.1103/PhysRevB.40.3616
    [36]
    WANG Y. Classical mean-field approach for thermodynamics: ab initio thermophysical properties of cerium [J]. Physical Review B, 2000, 61(18): R11863–R11866. doi: 10.1103/PhysRevB.61.R11863
    [37]
    WANG Y, LI L. Mean-field potential approach to thermodynamic properties of metal: Al as a prototype [J]. Physical Review B, 2000, 62(1): 196–202. doi: 10.1103/PhysRevB.62.196
    [38]
    WANG Y, AHUJA R, JOHANSSON B. Mean-field potential approach to the quasiharmonic theory of solids [J]. International Journal of Quantum Chemistry, 2004, 96(5): 501–506. doi: 10.1002/qua.10769
    [39]
    WANG Y, AHUJA R, JOHANSSON B. Melting of iron and other metals at Earth’s core conditions: a simplified computational approach [J]. Physical Review B, 2001, 65(1): 014104. doi: 10.1103/PhysRevB.65.014104
    [40]
    SLATER J C. Introduction to chemical physics [M]. New York: McGraw-Hill, 1939.
    [41]
    DUGDALE J S, MACDONALD D K C. The thermal expansion of solids [J]. Physical Review, 1953, 89(4): 832–834. doi: 10.1103/PhysRev.89.832
    [42]
    VASHCHENKO V Y, ZUBAREV V N. Concerning the Grüneisen constant [J]. Soviet Physics-Solid State, 1963, 5: 653–655.
    [43]
    SONG H F, LIU H F. Modified mean-field potential approach to thermodynamic properties of a low-symmetry crystal: beryllium as a prototype [J]. Physical Review B, 2007, 75(24): 245126. doi: 10.1103/PhysRevB.75.245126
    [44]
    SONG H F, TIAN M F, LIU H F, et al. Theoretical study on equation of state of porous Mo and Sn [J]. Chinese Physics Letters, 2014, 31(1): 016402. doi: 10.1088/0256-307X/31/1/016402
    [45]
    WANG W Y, ZHANG S Y, LI G N, et al. Artificial intelligence enabled smart design and manufacturing of advanced materials: the endless Frontier in Al+ era [J]. Materials Genome Engineering Advances, 2024, 2(3): e56. doi: 10.1002/mgea.56
    [46]
    YU W, CHONG X Y, LIANG Y X, et al. Discovering novel γ-γ′ Pt-Al superalloys via lattice stability in Pt3Al induced by local atomic environment distortion [J]. Acta Materialia, 2024, 281: 120413. doi: 10.1016/j.actamat.2024.120413
    [47]
    HAFNER J. Materials simulations using VASP—a quantum perspective to materials science [J]. Computer Physics Communications, 2007, 177(1/2): 6–13. doi: 10.1016/j.cpc.2007.02.045
    [48]
    ZHANG Q L, ZHANG P, SONG H F, et al. Mean-field potential calculations of high-pressure equation of state for BeO [J]. Chinese Physics B, 2008, 17(4): 1341–1348. doi: 10.1088/1674-1056/17/4/031
    [49]
    陈惠发, SALIPU A F. 弹性与塑性力学 [M]. 余天庆, 王勋文, 刘再华, 译. 北京: 中国建筑工业出版社, 2004.

    CHEN H F, SALIPU A F. Elasticity and plasticity [M]. Translated by YU T Q, WANG X W, LIU Z H. Beijing: China Architecture Publishing & Building Press, 2004.
    [50]
    简单. 铀和二氧化铀状态方程与弹性模量计算 [D]. 绵阳: 中国工程物理研究院, 2020.

    JIAN D. Calculation of equations of state and elastic modulus of uranium and uranium dioxide [D]. Mianyang: China Academy of Engineering Physics, 2020.
    [51]
    SWENSON C A. Equation of state of cubic solids; some generalizations [J]. Journal of Physics and Chemistry of Solids, 1968, 29(8): 1337–1348. doi: 10.1016/0022-3697(68)90185-6
    [52]
    WANG Y, WANG J J, ZHANG H, et al. A first-principles approach to finite temperature elastic constants [J]. Journal of Physics: Condensed Matter, 2010, 22(22): 225404. doi: 10.1088/0953-8984/22/22/225404
    [53]
    VOIGT W J T L. A determination of the elastic constants for beta-quartz lehrbuch de kristallphysik [J]. Terubner Leipzig, 1928, 40: 2856–2860.
    [54]
    REUSS A. Calculation of the flow limits of mixed crystals on the basis of the plasticity of monocrystals [J]. Zeitschrift fur Angewandte Mathematik und Mechanik, 1929, 9: 49–58. doi: 10.1002/zamm.19290090104
    [55]
    谭华. 实验冲击波物理导引 [M]. 北京: 国防工业出版社, 2007.

    TAN H. Introduction to experimental shock-wave physics [M]. Beijing: National Defense Industry Press, 2007.
    [56]
    经福谦. 实验物态方程导引 [M]. 2版. 北京: 科学出版社, 1999.

    JING F Q. Introduction to experimental equation of state [M]. 2nd ed. Beijing: Science Press, 1999.
    [57]
    CHEN S, SUN Y, DUAN Y H, et al. Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations [J]. Journal of Alloys and Compounds, 2015, 630: 202–208. doi: 10.1016/j.jallcom.2015.01.038
    [58]
    FENG J, XIAO B, WAN C L, et al. Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln=La, Pr, Nd, Sm, Eu and Gd) pyrochlore [J]. Acta Materialia, 2011, 59(4): 1742–1760. doi: 10.1016/j.actamat.2010.11.041
    [59]
    BIRCH F. Finite elastic strain of cubic crystals [J]. Physical Review, 1947, 71(11): 809–824. doi: 10.1103/PhysRev.71.809
    [60]
    BARRETT C S, MASSALSKI T B. Structure of metals: crystallographic methods, principles and data [M]. 3rd ed. Oxford: Pergamon, 1980.
    [61]
    KITTEL C. Introduction to solid state physics [M]. New York: Wiley, 1976.
    [62]
    BRANDES E A, BROOK G B. Smithells metals reference book [M]. 7th ed. Oxford: Butterworth-Heinemann, 2013.
    [63]
    CHEONG B H, CHANG K J. First-principles study of the structural properties of Sn under pressure [J]. Physical Review B, 1991, 44(9): 4103–4108. doi: 10.1103/PhysRevB.44.4103
    [64]
    TONKOV E Y, PONYATOVSKY E G. Phase transformations of elements under high pressure [M]. Boca Raton: CRC Press, 2005.
    [65]
    BARNETT J D, BEAN V E, HALL H T. X-ray diffraction studies on tin to 100 kilobars [J]. Journal of Applied Physics, 1966, 37(2): 875–877. doi: 10.1063/1.1708275
    [66]
    REHN D A, GREEFF C W, BURAKOVSKY L, et al. Multiphase tin equation of state using density functional theory [J]. Physical Review B, 2021, 103(18): 184102. doi: 10.1103/PhysRevB.103.184102
    [67]
    SALAMAT A, GARBARINO G, DEWAELE A, et al. Dense close-packed phase of tin above 157 GPa observed experimentally via angle-dispersive X-ray diffraction [J]. Physical Review B, 2011, 84(14): 140104. doi: 10.1103/PhysRevB.84.140104
    [68]
    RAMBERT N, SITAUD B, FAURE P. Equation d’état multiphase et courbe de fusion de l’étain sous pression: une nouvelle approche expérimentale: rapport CEA A-22F00-00-10 [R]. Gif-sur-Yvette: CEA, 2003.
    [69]
    FRÉVILLE R, DEWAELE A, GUIGNOT N, et al. High-pressure-high-temperature phase diagram of tin [J]. Physical Review B, 2024, 109(10): 104116. doi: 10.1103/PhysRevB.109.104116
    [70]
    KIEFER B, DUFFY T S, UCHIDA T, et al. Melting of tin at high pressures [EB/OL]. [2025-04-05]. https://www.researchgate.net/publication/267709650_Melting_of_Tin_at_High_Pressures.
    [71]
    MARSH S P. LASL shock Hugoniot data [M]. Berkeley : University of California Press, 1980.
    [72]
    BORN M. On the stability of crystal lattices. I [J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1940, 36(2): 160–172. doi: 10.1017/S0305004100017138
    [73]
    BORN M, HUANG K. Dynamical theory of crystal lattices [M]. New York: Oxford University Press, 1996.
    [74]
    MOUHAT F, COUDERT F X. Necessary and sufficient elastic stability conditions in various crystal systems [J]. Physical Review B, 2014, 90(22): 224104. doi: 10.1103/PhysRevB.90.224104
    [75]
    PRICE D L, ROWE J M. The crystal dynamics of grey (α) tin at 90 °K [J]. Solid State Communications, 1969, 7(19): 1433–1438. doi: 10.1016/0038-1098(69)90318-4
    [76]
    BUCHENAUER C J, CARDONA M, POLLAK F H. Raman scattering in gray tin [J]. Physical Review B, 1971, 3(4): 1243–1244. doi: 10.1103/PhysRevB.3.1243
    [77]
    BRIDGMAN P W. The compressibility of thirty metals as a function of pressure and temperature [J]. Proceedings of the American Academy of Arts and Sciences, 1923, 58(5): 165–242. doi: 10.2307/20025987
    [78]
    BRIDGMAN P W. The viscosity of liquids under pressure [J]. Proceedings of the National Academy of Sciences of the United States of America, 1925, 11(10): 603–606. doi: 10.1073/pnas.11.10.603
    [79]
    PRASAD S C, WOOSTER W A. The study of the elastic constants of white tin by diffuse X-ray reflexion [J]. Acta Crystallographica, 1955, 8(11): 682–686. doi: 10.1107/S0365110X55002119
    [80]
    MASON W P, BÖMMEL H E. Ultrasonic attenuation at low temperatures for metals in the normal and superconducting states [J]. The Journal of the Acoustical Society of America, 1956, 28(5): 930–943. doi: 10.1121/1.1908524
    [81]
    HOUSE D G, VERNON E V. Determination of the elastic moduli of tin single crystals, and their variation with temperature [J]. British Journal of Applied Physics, 1960, 11(6): 254–259. doi: 10.1088/0508-3443/11/6/308
    [82]
    CARDINAL L C. NRL problem No: F03-01 [R]. Washington D C, USA: Naval Research Laboratory, 1963: 31.
    [83]
    KRAMER W, NÖLTING J. Anomale spezifische wärmen und fehlordnung der metalle indium, zinn, blei, zink, antimon und aluminium [J]. Acta Metallurgica, 1972, 20(12): 1353–1359. doi: 10.1016/0001-6160(72)90070-3
    [84]
    DU X P, ZHAO J C. Facile measurement of single-crystal elastic constants from polycrystalline samples [J]. NPJ Computational Materials, 2017, 3(1): 17. doi: 10.1038/s41524-017-0019-x
    [85]
    RAYNE J A, CHANDRASEKHAR B S. Elastic constants of beta tin from 4.2 K to 300 K [J]. Physical Review, 1960, 120(5): 1658–1663. doi: 10.1103/PhysRev.120.1658
    [86]
    KAMMER E W, CARDINAL L C, VOLD C L, et al. The elastic constants for single-crystal bismuth and tin from room temperature to the melting point [J]. Journal of Physics and Chemistry of Solids, 1972, 33(10): 1891–1898. doi: 10.1016/S0022-3697(72)80487-6
    [87]
    FURNISH M D, THADHANI N N, HORIE Y. Shock compression of condensed matter 2001 [C]//Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter. Melville: American Institute of Physics, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(15)  / Tables(3)

    Article Metrics

    Article views(384) PDF downloads(38) Cited by()
    Proportional views
    Related
    

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return