| Citation: | ZHUO Ran, XIE Xinghua, WANG Can. Experimental Study and Numerical Simulation of Explosive Welding of Nickel/304 Stainless Steel[J]. Chinese Journal of High Pressure Physics, 2025, 39(10): 105301. doi: 10.11858/gywlxb.20251041 |
| [1] |
LI J H, LIANG X P, TAO H, et al. Study on the interface formation mechanism and properties of CoCrNi/316L composites prepared by explosive welding [J]. Journal of Materials Research and Technology, 2025, 35: 4587–4598. doi: 10.1016/j.jmrt.2025.02.122
|
| [2] |
CORIGLIANO P, CRUPI V, GUGLIELMINO E. Non linear finite element simulation of explosive welded joints of dissimilar metals for shipbuilding applications [J]. Ocean Engineering, 2018, 160: 346–353. doi: 10.1016/j.oceaneng.2018.04.070
|
| [3] |
ZHANG C H, SONG C B, ZHU W G, et al. Interfaces of the 5083Al/1060Al/TA1/Ni/SUS304 five-layer composite plate fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 19: 314–331. doi: 10.1016/j.jmrt.2022.04.157
|
| [4] |
PETUSHKOV V G. Physical interpretation of explosion welding near its lower boundary [J]. Combustion, Explosion and Shock Waves, 2000, 36(6): 771–776. doi: 10.1023/A:1002810908014
|
| [5] |
AFROUZIAN A, GRODEN C J, FIELD D P, et al. Additive manufacturing of Ti-Ni bimetallic structures [J]. Materials & Design, 2022, 215: 110461. doi: 10.1016/j.matdes.2022.110461
|
| [6] |
ZHOU J N, LUO N, LIANG H L, et al. Multi-scale simulation and microstructure characteristics of TC4 ELI/Al 6013 plates by explosive welding [J]. Journal of Manufacturing Processes, 2024, 124: 1180–1192. doi: 10.1016/j.jmapro.2024.07.014
|
| [7] |
SHMORGUN V G, BOGDANOV A I, TAUBE A O, et al. Evaluation of heat resistance and thermal conductivity of Ni-Cr-Al system layered coatings [J]. Metallurgist, 2022, 66(7/8): 934–941. doi: 10.1007/s11015-022-01405-z
|
| [8] |
LIPIŃSKA M, URA-BIŃCZYK E, MRÓZ S J, et al. Microstructure and corrosion resistance of Ni-Ti-Al multi-layer laminates manufactured by explosive welding with subsequent rolling [J]. Journal of Manufacturing Processes, 2023, 105: 84–98. doi: 10.1016/j.jmapro.2023.09.046
|
| [9] |
YUAN J X, SHAO F, BAI L Y, et al. Interface characteristics and mechanical properties of titanium/aluminum composites with an interlayer fabricated by explosive welding [J]. Journal of Central South University, 2024, 31(1): 43–58. doi: 10.1007/s11771-023-5476-4
|
| [10] |
SUN Z R, SHI C G, SHI H, et al. Comparative study of energy distribution and interface morphology in parallel and double vertical explosive welding by numerical simulations and experiments [J]. Materials & Design, 2020, 195: 109027. doi: 10.1016/j.matdes.2020.109027
|
| [11] |
缪广红, 马宏昊, 沈兆武, 等. 蜂窝结构炸药及其应用 [J]. 含能材料, 2014, 22(5): 693–697. doi: 10.3969/j.issn.1006-9941.2014.05.022
MIAO G H, MA H H, SHEN Z W, et al. Explosives with structure of honeycomb and its application [J]. Chinese Journal of Energetic Materials, 2014, 22(5): 693–697. doi: 10.3969/j.issn.1006-9941.2014.05.022
|
| [12] |
ZHA Y C, ZHANG C H, ZHU W G, et al. Experimental and numerical investigations on the microstructural features and mechanical properties of explosively welded aluminum/titanium/steel trimetallic plate [J]. Materials Characterization, 2024, 209: 113669. doi: 10.1016/j.matchar.2024.113669
|
| [13] |
CHEN X, XIE X Q, HU J N, et al. Experimental and numerical study on the mechanism of interlayer explosive welding [J]. Journal of Materials Research and Technology, 2024, 30: 5529–5546. doi: 10.1016/j.jmrt.2024.04.209
|
| [14] |
WANG X, ZHENG Y Y, LIU H X, et al. Numerical study of the mechanism of explosive/impact welding using smoothed particle hydrodynamics method [J]. Materials & Design, 2012, 35: 210–219. doi: 10.1016/j.matdes.2011.09.047
|
| [15] |
KHALAJ G, MORADI M, ASADIAN E. Exploring the impact of rolling temperature on interface microstructure and mechanical properties of steel-bronze explosive welded bilayer composite sheets [J]. Welding in the World, 2023, 67(6): 1411–1425. doi: 10.1007/s40194-023-01495-6
|
| [16] |
DERIBAS A A, KUDINOV V M, MATVEENKOV F I, et al. Determination of the impact parameters of flat plates in explosive welding [J]. Combustion, Explosion and Shock Waves, 1967, 3(2): 182–186. doi: 10.1007/BF00748745
|
| [17] |
DERIBAS A A, KUDINOV V M, MATVEENKOV F I. Effect of the initial parameters on the process of wave formation in explosive welding [J]. Combustion, Explosion and Shock Waves, 1967, 3(4): 344–348. doi: 10.1007/BF00741684
|
| [18] |
ZHOU J N, LUO N, JIANG L, et al. Interface microstructure and numerical simulation investigations of Ni/TC18 composite tube fabricated by explosive welding [J]. Journal of Materials Engineering and Performance, 2025, 34(7): 5735–5750. doi: 10.1007/s11665-024-09544-x
|
| [19] |
PENG J X, HU C M, LI Y L, et al. Determination of parameters of Steinberg-Guinan constitutive model with shock wave experiments [J]. International Journal of Modern Physics B, 2008, 22: 1111–1116. doi: 10.1142/S0217979208046396
|
| [20] |
LIANG H L, LUO N, CHEN Y L, et al. Interface microstructure and phase constitution of AA1060/TA2/SS30408 trimetallic composites fabricated by explosive welding [J]. Journal of Materials Research and Technology, 2022, 18: 564–576. doi: 10.1016/j.jmrt.2022.02.109
|
| [21] |
MAĆKOWIAK P, PŁACZEK D. Numerical simulation of the welding process for the prediction of temperature distribution on Al/steel explosion welded joint [J]. Journal of Physics: Conference Series, 2024, 2714: 012020. doi: 10.1088/1742-6596/2714/1/012020
|
| [22] |
CHU Q L, CAO Q L, ZHANG M, et al. Microstructure and mechanical properties investigation of explosively welded titanium/copper/steel trimetallic plate [J]. Materials Characterization, 2022, 192: 112250. doi: 10.1016/j.matchar.2022.112250
|
| [23] |
CHU Q L, ZHANG M, LI J H, et al. Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding [J]. Materials Science and Engineering: A, 2017, 689: 323–331. doi: 10.1016/j.msea.2017.02.075
|
| [24] |
KODUKULA S, MANNINEN T, PORTER D. Estimation of Lankford coefficients of austenitic and ferritic stainless steels using mean grain orientations from micro-texture measurements [J]. ISIJ International, 2021, 61(1): 401–407. doi: 10.2355/isijinternational.ISIJINT-2020-256
|
| [25] |
ZHOU Q, LIU R, ZHOU Q, et al. Microstructure characterization and tensile shear failure mechanism of the bonding interface of explosively welded titanium-steel composite [J]. Materials Science and Engineering: A, 2021, 820: 141559. doi: 10.1016/j.msea.2021.141559
|